Solution:
According to ideal gas equation: PV = nRT.
P = 764 mmHg = 1.00526 atm.
V = 8.40 L;
R = 0.08206 L atm K-1 mol-1;
T = 23.0°C = 296.15 K.
Then,
n = PV / RT
n(CO2) = (1.00526 atm × 8.40 L) / (0.08206 L atm K-1 mol-1 × 296.15 K) = 0.3475 mol
n(CO2) = 0.3475 mol.
The balanced chemical equation:
4KO2(s) + 2CO2(g) --> 2K2CO3(s) + 3O2(g)
According to chemical equation: n(KO2)/4 = n(CO2)/2;
n(KO2) = 4×n(CO2)/2 = 2×n(CO2).
n(KO2) = 2 × (0.3475 mol) = 0.695 mol.
Mass of KO2 = Moles of KO2 × Molar mass of KO2
The molar mass of KO2 is 71.1 g/mol.
Then,
Mass of KO2 = (0.6948 mol) × (71.1 g/mol) = 49.4145 g = 49.41 g
m(KO2) = 49.41 g.
Answer: Mass of KO2 is 49.41 g.
Comments
Leave a comment