Question #109616
A 107 g sample of CH3CH2Br (Bromoethane) gas has a volume of 4.375 L at a temperature of 36°C.
i. Calculate the pressure using the Ideal Gas Law.
ii. Calculate the corrected pressure using the Van der Waals Equation.
atm×L2 L a=11.723 mol2 b=0.08406 mol
1
Expert's answer
2020-04-15T13:59:04-0400


Molar mass of Bromoethane is 109 gms.

Thus, number of moles = n=107/109n=107/109

Given : V=4.375L;T=36°C=273+36=309KV=4.375 L ; T=36°C=273+36=309K

We know Gas constant = R=0.0821Latmmol1K1R=0.0821 Latm mol^{-1}K^{-1}


i. Ideal gas law : PV=nRT    P=nRT/VPV=nRT \implies P=nRT/V

P=1070.0821309/(1094.375)=5.692atmP=107*0.0821*309/(109*4.375)=5.692 atm ---(Answer)


ii. Van der Waals Equation : (P+an2/V2)(Vnb)=nRT(P+an^2/V^2)(V-nb)=nRT

Given : a=11.723atmL2mol2;b=0.08406Lmol1a=11.723atmL^2 mol^{-2}; b=0.08406L mol^{-1}

Thus, (P+(11.7231072/(10924.375)))(4.375(P+(11.723*107^2/(109^2*4.375)))(4.375-(1070.08406/109)=1070.0821309/109(107*0.08406/109)=107*0.0821*309/109

    (P+2.582)(4.3750.0825)=24.9\implies (P+2.582)(4.375-0.0825)=24.9

    P=(24.9/4.292)2.582=3.22atm\implies P=(24.9/4.292)-2.582=3.22 atm ----(Answer)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS