(10)We know "\u2206G_{rxn}=-RTln(K)"
(a)at standard conditions
"\u2206G_{rxn}=-8.314\u00d7298\u00d7ln(2.26\u00d710^4)"
"\u2206G_{rxn}=-8.314\u00d7298\u00d71.8345=4545.13232"
(b)at equilibrium
"\u2206G=0"
(c)"P_{CH_3OH}=1.5 atm;P_{CO}=0.012atm;P_{H_2}=0.012atm"
"K_p=\\frac{[CH_3OH]}{[CO][H_2]^2}=\\frac{1.5}{0.012^3}=8.68\u00d710^{5}"
"\u2206G_{rxn}=-8.314\u00d7298\u00d7ln(8.68\u00d710^5)"
"\u2206G_{rxn}=-8.314\u00d7298\u00d75.94"
"\u2206G_{rxn}=14713.1102"
(9)(a)"2NO+O_2->2NO_2"
0.002 0.001 0.05
At equilibrium no of moles of each compound.
"K_c=\\frac{[NO_2]^2}{[NO]^2[O_2]}"
"K_c=\\frac{[0.05]^2}{[0.002]^2[0.001]}=6.9\u00d710^5\/mol"
(b)"N_2(g)+O_2(g)->2NO(g)"
0.036 0.0089 3.6
At equilibrium no of moles of each compound.
"K_c=\\frac{[NO]^2}{[N_2][O_2]}"
"K_c=\\frac{[3.6]^2}{[0.036][0.0089]}=4.1\u00d710^4"
Comments
Leave a comment