"K=Ae^{-E_a\/RT}"
let's say at room temperature the value of rate constant is K then at temperature "T_2" the rate becomes 100K
"\\frac{100K}{K}=\\frac{Ae^{-E_a\/RT_1}}{Ae^{-E_a\/RT_2}}\\\\"
"100=e^{E_a(1\/T_2-1\/T_1)}"
Taking log both sides
"\\ln100=E_a(\\frac1{T_2}-\\frac1{273})"
"4.6=98.4\\times10^3(\\frac1{T_2})-360.44"
"355.84=98.4\\times1000\/T_2"
"T_2=276.5 K"
Comments
Leave a comment