Question #107437
Calculate the rate of heat loss to the surroundings and the quantity of steam that would condense per hour per meter of a 1.5 inch steel pipe (o.d.=0.04826 m, i.d.=0.04089 m, k=45 W/m.K) containing saturated steam at 130°C. The heat transfer coefficient on the steam side is 11,400 W/m² K and that on the outside of the pipe to air is 5.7 W/m²K. Ambient air averages 15°C for the year. (b) How much energy would be saved in 1 year if the pipe is insulated with 5 cm thick insulation having a thermal conductivity of 0.07 W/m.K. The heat transfer coefficients on the steam and air sides are the same as in (a).
1
Expert's answer
2020-04-02T09:03:54-0400

(a)

Rconv,i=1hiπDiR_{conv,i} ={1 \over h_i\pi D_i}

Rconv,i=15.73.140.04089=1.36640mK/WR_{conv,i} = {1 \over 5.7*3.14*0.04089} = 1.36640 m*K/W

Rconv,o=1hoπDoR_{conv,o} ={1 \over h_o\pi D_o}

Rconv,o=1114003.140.04826=0.00058mK/WR_{conv,o} = {1 \over 11 400*3.14*0.04826} = 0.00058m*K/W

RW=ln(Do/Di)2πkWR'_W = {ln(D_o/D_i) \over 2\pi k_W}

RW=0.165723.1445=0.00059mK/WR'_W = {0.1657 \over 2*3.14*45} = 0.00059 m*K/W

1/UA=(Rconv,i+Rconv,o+RW)/L1/UA = (R_{conv,i} + R_{conv,o} + R'_W)/L

1.5 inch = 0.0381 m

1/UA=(1.36640+0.00058+0.00059)/0.0381=35.90971K/W1/UA = (1.36640+0.00058+0.00059)/0.0381 = 35.90971K/W

UA=1/35.90971=0.02785W/KUA = 1/35.90971 = 0.02785W/K

Then:


A=0.02785/UA = 0.02785/U

1/U=1/hi+1/ho+Rconv,o+Rconv,i1/U = 1/h_i + 1/h_o + R_{conv,o} + R_{conv,i}

1/U=1/11400+1/5.7+0.00058+1.36640=1.542511/U = 1/11 400 + 1/5.7 + 0.00058 + 1.36640 = 1.54251

U=1/1.54251=0.64829W/m2KU = 1/1.54251 = 0.64829W/m^2*K

From this:

A=0.02785/0.64829=0.04296m2A = 0.02785/0.64829 = 0.04296m^2

Then:


Q/t=AΔTRwQ/t = {A\Delta T \over R_w}Q=(0.04926115)/0.00059=9601.52542J/secQ = (0.04926*115)/0.00059 = 9601.52542 J/sec


сvap2000J/(kgK)с_{vap} \approx 2000 J/(kg*K)

m=Q/cΔT=9601.52542/(2000115)=0.041746kgm = Q/c\Delta T = 9601.52542/(2000*115) = 0.041746 kg

(b)

RW=ln(Do+/D0)2πkR''_W = {ln(D^+_o/D_0) \over 2\pi k}

RW=0.09858/0.4396=0.22425mK/WR''_W = 0.09858/0.4396 = 0.22425m*K/W

1/UA=(Rconv,i+Rconv,o+RW+RW)/L1/UA = (R_{conv,i} + R_{conv,o} + R'_W + R''_W)/L

1/UA=41.78005K/W1/UA = 41.78005K/W

UA=0.02393W/KUA = 0.02393W/K

1/U=1/11400+1/5.7+0.00058+1.36640+0.22425=1.766761/U = 1/11 400 + 1/5.7 + 0.00058 + 1.36640 + 0.22425 = 1.76676

U=1/1.76676=0.56601Wm2/KU = 1/1.76676 = 0.56601W*m^2/K

A=0.02393/0.56601=0.04229m2A = 0.02393/0.56601 = 0.04229m^2

Q=(0.04229115)/0.00059=8242.9661J/secQ = (0.04229*115)/0.00059 = 8 242.9661 J/sec

ΔQ=9601.525428242.96610=1358.55932J/sec\Delta Q = 9601.52542 - 8 242.96610 = 1358.55932J/sec

Per year:


1358.55932365246060=4.281010J1358.55932*365*24*60*60 =4.28*10^{10} J


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS