2020-03-31T16:34:34-04:00
Calculate the rate of heat loss to the surroundings and the quantity of steam that would condense per hour per meter of a 1.5 inch steel pipe (o.d.=0.04826 m, i.d.=0.04089 m, k=45 W/m.K) containing saturated steam at 130°C. The heat transfer coefficient on the steam side is 11,400 W/m² K and that on the outside of the pipe to air is 5.7 W/m²K. Ambient air averages 15°C for the year. (b) How much energy would be saved in 1 year if the pipe is insulated with 5 cm thick insulation having a thermal conductivity of 0.07 W/m.K. The heat transfer coefficients on the steam and air sides are the same as in (a).
1
2020-04-02T09:03:54-0400
(a)
R c o n v , i = 1 h i π D i R_{conv,i} ={1 \over h_i\pi D_i} R co n v , i = h i π D i 1
R c o n v , i = 1 5.7 ∗ 3.14 ∗ 0.04089 = 1.36640 m ∗ K / W R_{conv,i} = {1 \over 5.7*3.14*0.04089} = 1.36640 m*K/W R co n v , i = 5.7 ∗ 3.14 ∗ 0.04089 1 = 1.36640 m ∗ K / W
R c o n v , o = 1 h o π D o R_{conv,o} ={1 \over h_o\pi D_o} R co n v , o = h o π D o 1
R c o n v , o = 1 11400 ∗ 3.14 ∗ 0.04826 = 0.00058 m ∗ K / W R_{conv,o} = {1 \over 11 400*3.14*0.04826} = 0.00058m*K/W R co n v , o = 11400 ∗ 3.14 ∗ 0.04826 1 = 0.00058 m ∗ K / W
R W ′ = l n ( D o / D i ) 2 π k W R'_W = {ln(D_o/D_i) \over 2\pi k_W} R W ′ = 2 π k W l n ( D o / D i )
R W ′ = 0.1657 2 ∗ 3.14 ∗ 45 = 0.00059 m ∗ K / W R'_W = {0.1657 \over 2*3.14*45} = 0.00059 m*K/W R W ′ = 2 ∗ 3.14 ∗ 45 0.1657 = 0.00059 m ∗ K / W
1 / U A = ( R c o n v , i + R c o n v , o + R W ′ ) / L 1/UA = (R_{conv,i} + R_{conv,o} + R'_W)/L 1/ U A = ( R co n v , i + R co n v , o + R W ′ ) / L 1.5 inch = 0.0381 m
1 / U A = ( 1.36640 + 0.00058 + 0.00059 ) / 0.0381 = 35.90971 K / W 1/UA = (1.36640+0.00058+0.00059)/0.0381 = 35.90971K/W 1/ U A = ( 1.36640 + 0.00058 + 0.00059 ) /0.0381 = 35.90971 K / W
U A = 1 / 35.90971 = 0.02785 W / K UA = 1/35.90971 = 0.02785W/K U A = 1/35.90971 = 0.02785 W / K Then:
A = 0.02785 / U A = 0.02785/U A = 0.02785/ U
1 / U = 1 / h i + 1 / h o + R c o n v , o + R c o n v , i 1/U = 1/h_i + 1/h_o + R_{conv,o} + R_{conv,i} 1/ U = 1/ h i + 1/ h o + R co n v , o + R co n v , i
1 / U = 1 / 11400 + 1 / 5.7 + 0.00058 + 1.36640 = 1.54251 1/U = 1/11 400 + 1/5.7 + 0.00058 + 1.36640 = 1.54251 1/ U = 1/11400 + 1/5.7 + 0.00058 + 1.36640 = 1.54251
U = 1 / 1.54251 = 0.64829 W / m 2 ∗ K U = 1/1.54251 = 0.64829W/m^2*K U = 1/1.54251 = 0.64829 W / m 2 ∗ K From this:
A = 0.02785 / 0.64829 = 0.04296 m 2 A = 0.02785/0.64829 = 0.04296m^2 A = 0.02785/0.64829 = 0.04296 m 2 Then:
Q / t = A Δ T R w Q/t = {A\Delta T \over R_w} Q / t = R w A Δ T Q = ( 0.04926 ∗ 115 ) / 0.00059 = 9601.52542 J / s e c Q = (0.04926*115)/0.00059 = 9601.52542 J/sec Q = ( 0.04926 ∗ 115 ) /0.00059 = 9601.52542 J / sec
с v a p ≈ 2000 J / ( k g ∗ K ) с_{vap} \approx 2000 J/(kg*K) с v a p ≈ 2000 J / ( k g ∗ K )
m = Q / c Δ T = 9601.52542 / ( 2000 ∗ 115 ) = 0.041746 k g m = Q/c\Delta T = 9601.52542/(2000*115) = 0.041746 kg m = Q / c Δ T = 9601.52542/ ( 2000 ∗ 115 ) = 0.041746 k g
(b)
R W ′ ′ = l n ( D o + / D 0 ) 2 π k R''_W = {ln(D^+_o/D_0) \over 2\pi k} R W ′′ = 2 πk l n ( D o + / D 0 )
R W ′ ′ = 0.09858 / 0.4396 = 0.22425 m ∗ K / W R''_W = 0.09858/0.4396 = 0.22425m*K/W R W ′′ = 0.09858/0.4396 = 0.22425 m ∗ K / W
1 / U A = ( R c o n v , i + R c o n v , o + R W ′ + R W ′ ′ ) / L 1/UA = (R_{conv,i} + R_{conv,o} + R'_W + R''_W)/L 1/ U A = ( R co n v , i + R co n v , o + R W ′ + R W ′′ ) / L
1 / U A = 41.78005 K / W 1/UA = 41.78005K/W 1/ U A = 41.78005 K / W
U A = 0.02393 W / K UA = 0.02393W/K U A = 0.02393 W / K
1 / U = 1 / 11400 + 1 / 5.7 + 0.00058 + 1.36640 + 0.22425 = 1.76676 1/U = 1/11 400 + 1/5.7 + 0.00058 + 1.36640 + 0.22425 = 1.76676 1/ U = 1/11400 + 1/5.7 + 0.00058 + 1.36640 + 0.22425 = 1.76676
U = 1 / 1.76676 = 0.56601 W ∗ m 2 / K U = 1/1.76676 = 0.56601W*m^2/K U = 1/1.76676 = 0.56601 W ∗ m 2 / K
A = 0.02393 / 0.56601 = 0.04229 m 2 A = 0.02393/0.56601 = 0.04229m^2 A = 0.02393/0.56601 = 0.04229 m 2
Q = ( 0.04229 ∗ 115 ) / 0.00059 = 8242.9661 J / s e c Q = (0.04229*115)/0.00059 = 8 242.9661 J/sec Q = ( 0.04229 ∗ 115 ) /0.00059 = 8242.9661 J / sec
Δ Q = 9601.52542 − 8242.96610 = 1358.55932 J / s e c \Delta Q = 9601.52542 - 8 242.96610 = 1358.55932J/sec Δ Q = 9601.52542 − 8242.96610 = 1358.55932 J / sec Per year:
1358.55932 ∗ 365 ∗ 24 ∗ 60 ∗ 60 = 4.28 ∗ 1 0 10 J 1358.55932*365*24*60*60 =4.28*10^{10} J 1358.55932 ∗ 365 ∗ 24 ∗ 60 ∗ 60 = 4.28 ∗ 1 0 10 J
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Chemistry
Comments