"-dA\/dt=kA^2 \\implies _{A_o}^{A_t}\\int dA\/A^2=_0^t\\int(-k)dt"
Solving this, we get;
"1\/A_t-1\/A_0=kt"
This is the second order rate equation.
1.Given : "k=0.0265 M^{\u20131}min^{\u20131}; A_0= 4.50 M"
Thus, "1\/A_t=2\/9+180*0.0265=4.999"
"\\implies A_t=0.2M."
2. Given : "k=0.0265 M^{\u20131}min^{\u20131}; A_0= 2.50 M"
Thus, "1\/A_t=2\/5+180*0.0265=5.17"
"\\implies A_t=0.1934M."
3.Given : "k=0.0265 M^{\u20131}min^{\u20131}; A_0= 2.75 M"
Thus, "1\/A_t=2\/11+180*0.0265=4.952"
"\\implies A_t=0.2019M."
Comments
Leave a comment