Calculate de broglie wavelength and velocity of an electron carrying kinetic energy 3keV
We find the speed of an electron, knowing its kinetic energy"W_k=\\frac{m_e \\cdot v^2}{2}"
"v=\\sqrt{\\frac{2 \\cdot W_k}{m_e}}=\\sqrt{\\frac{2 \\cdot 3 \\cdot 10^3 \\cdot 1.6 \\cdot 10^{-19}}{9.1 \\cdot 10^{-31}}}=3.248 \\cdot 10^7 m\/s"
the speed of an electron is much less than the speed of light
"v<< c"
therefore, finds the de Broglie wavelength by the formula
"\\lambda_{db}=\\frac{h}{m_e \\cdot v}= \\frac{6.62 \\cdot 10^{-34}}{9.1 \\cdot 10^{-31}\\cdot 3.248 \\cdot 10^7 }=2.24 \\cdot 10^{-11}m"
Comments
Many many thanks!
Leave a comment