Answer to Question #282727 in Quantum Mechanics for BIGIRMANA Elie

Question #282727

7. Show that if the linear operators Aˆ and Bˆ do not commute, the operators


(AˆBˆ + BˆAˆ) and i[A, ˆ Bˆ] are Hermitian.



1
Expert's answer
2021-12-27T13:03:26-0500

"Answer"

According to given question

"\\hat{A}^{+}=\\hat{A}"

"\\hat{B}^{+}=\\hat{B}"

"[\\hat{A}, \\hat{B}]=\\hat{A}\\hat{B}-\\hat{B}\\hat{A} \\mathrlap{\\,\/}{=}0"

Now checking hermitian Or not

"(\\hat{A}\\hat{B}+\\hat{B}\\hat{A}) ^{+}\\\\=(\\hat{A}\\hat{B}) ^{+}+(\\hat{B}\\hat{A}) ^{+}\\\\=\n\\hat{B}^{+}\\hat{A}^{+}+\\hat{A}^{+}\\hat{B}^{+}\\\\=\\hat{B}\\hat{A}+\\hat{A}\\hat{B}"

So this is hermitian.

Now another part

"(i[\\hat{A}, \\hat{B}]) ^{+}\\\\=(-i)[\\hat{A}, \\hat{B}] ^{+}\\\\=(-i)(\\hat{A}\\hat{B}-\\hat{B}\\hat{A})^{+}\\\\=(-i)(\\hat{B}^{+}\\hat{A}^{+}-\\hat{A}^{+}\\hat{B}^{+}) \n\\\\=(-i)(\\hat{B}\\hat{A}-\\hat{A}\\hat{B})"

Taking negative sign common

"=i( \\hat{A}\\hat{B}-\\hat{B}\\hat{A}) \n=i[\\hat{A},\\hat{B}]"


So this is also hermitian.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS