7. Show that if the linear operators Aˆ and Bˆ do not commute, the operators
(AˆBˆ + BˆAˆ) and i[A, ˆ Bˆ] are Hermitian.
"Answer"
According to given question
"\\hat{A}^{+}=\\hat{A}"
"\\hat{B}^{+}=\\hat{B}"
"[\\hat{A}, \\hat{B}]=\\hat{A}\\hat{B}-\\hat{B}\\hat{A} \\mathrlap{\\,\/}{=}0"
Now checking hermitian Or not
"(\\hat{A}\\hat{B}+\\hat{B}\\hat{A}) ^{+}\\\\=(\\hat{A}\\hat{B}) ^{+}+(\\hat{B}\\hat{A}) ^{+}\\\\=\n\\hat{B}^{+}\\hat{A}^{+}+\\hat{A}^{+}\\hat{B}^{+}\\\\=\\hat{B}\\hat{A}+\\hat{A}\\hat{B}"
So this is hermitian.
Now another part
"(i[\\hat{A}, \\hat{B}]) ^{+}\\\\=(-i)[\\hat{A}, \\hat{B}] ^{+}\\\\=(-i)(\\hat{A}\\hat{B}-\\hat{B}\\hat{A})^{+}\\\\=(-i)(\\hat{B}^{+}\\hat{A}^{+}-\\hat{A}^{+}\\hat{B}^{+}) \n\\\\=(-i)(\\hat{B}\\hat{A}-\\hat{A}\\hat{B})"
Taking negative sign common
"=i( \\hat{A}\\hat{B}-\\hat{B}\\hat{A}) \n=i[\\hat{A},\\hat{B}]"
So this is also hermitian.
Comments
Leave a comment