Answer to Question #282727 in Quantum Mechanics for BIGIRMANA Elie

Question #282727

7. Show that if the linear operators Aˆ and Bˆ do not commute, the operators


(AˆBˆ + BˆAˆ) and i[A, ˆ Bˆ] are Hermitian.



1
Expert's answer
2021-12-27T13:03:26-0500

AnswerAnswer

According to given question

A^+=A^\hat{A}^{+}=\hat{A}

B^+=B^\hat{B}^{+}=\hat{B}

[A^,B^]=A^B^B^A^/=0[\hat{A}, \hat{B}]=\hat{A}\hat{B}-\hat{B}\hat{A} \mathrlap{\,/}{=}0

Now checking hermitian Or not

(A^B^+B^A^)+=(A^B^)++(B^A^)+=B^+A^++A^+B^+=B^A^+A^B^(\hat{A}\hat{B}+\hat{B}\hat{A}) ^{+}\\=(\hat{A}\hat{B}) ^{+}+(\hat{B}\hat{A}) ^{+}\\= \hat{B}^{+}\hat{A}^{+}+\hat{A}^{+}\hat{B}^{+}\\=\hat{B}\hat{A}+\hat{A}\hat{B}

So this is hermitian.

Now another part

(i[A^,B^])+=(i)[A^,B^]+=(i)(A^B^B^A^)+=(i)(B^+A^+A^+B^+)=(i)(B^A^A^B^)(i[\hat{A}, \hat{B}]) ^{+}\\=(-i)[\hat{A}, \hat{B}] ^{+}\\=(-i)(\hat{A}\hat{B}-\hat{B}\hat{A})^{+}\\=(-i)(\hat{B}^{+}\hat{A}^{+}-\hat{A}^{+}\hat{B}^{+}) \\=(-i)(\hat{B}\hat{A}-\hat{A}\hat{B})

Taking negative sign common

=i(A^B^B^A^)=i[A^,B^]=i( \hat{A}\hat{B}-\hat{B}\hat{A}) =i[\hat{A},\hat{B}]


So this is also hermitian.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment