Answer
According to given question
A^+=A^
B^+=B^
[A^,B^]=A^B^−B^A^/=0
Now checking hermitian Or not
(A^B^+B^A^)+=(A^B^)++(B^A^)+=B^+A^++A^+B^+=B^A^+A^B^
So this is hermitian.
Now another part
(i[A^,B^])+=(−i)[A^,B^]+=(−i)(A^B^−B^A^)+=(−i)(B^+A^+−A^+B^+)=(−i)(B^A^−A^B^)
Taking negative sign common
=i(A^B^−B^A^)=i[A^,B^]
So this is also hermitian.
Comments
Leave a comment