We have the linear operator A^=dx2d2−4x2 .
ψ(x)=xe−x2 is an eigenfunction of A^ , if A^ψ=λψ .
A^ψ=dx2d2(xe−x2)−4x2⋅xe−x2=dxd(e−x2−2x2e−x2)−4x3e−x2=−2xe−x2−4xe−x2+4x3e−x2−4x3e−x2=−6xe−x2=−6ψ
So, ψ(x) is an eigenfunction of A^ and the eigenvalue is λ=−6 .
Comments
Leave a comment