Answer to Question #282726 in Quantum Mechanics for BIGIRMANA Elie

Question #282726

6. Show that xe−x


2


is an eigenfunction of the linear operator d


2


dx2 − 4x


2


.


What is the eigenvalue?


1
Expert's answer
2021-12-27T13:03:30-0500

We have the linear operator A^=d2dx24x2\hat A=\frac{d^2}{dx^2}-4x^2 .

ψ(x)=xex2\psi (x)=xe^{-x^2} is an eigenfunction of A^\hat A , if A^ψ=λψ\hat A\psi =\lambda \psi .


A^ψ=d2dx2(xex2)4x2xex2=ddx(ex22x2ex2)4x3ex2=2xex24xex2+4x3ex24x3ex2=6xex2=6ψ\hat A\psi=\frac{d^2}{dx^2}\big(xe^{-x^2}\big)-4x^2\cdot xe^{-x^2}=\frac{d}{dx}\big( e^{-x^2}-2x^2e^{-x^2}\big)-4x^3e^{-x^2}= -2xe^{-x^2}-4xe^{-x^2}+4x^3e^{-x^2}-4x^3e^{-x^2}=-6xe^{-x^2}=-6\psi


So, ψ(x)\psi(x) is an eigenfunction of A^\hat A and the eigenvalue is λ=6\lambda=-6 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment