6. Show that xe−x
2
is an eigenfunction of the linear operator d
2
dx2 − 4x
2
.
What is the eigenvalue?
We have the linear operator "\\hat A=\\frac{d^2}{dx^2}-4x^2" .
"\\psi (x)=xe^{-x^2}" is an eigenfunction of "\\hat A" , if "\\hat A\\psi =\\lambda \\psi" .
"\\hat A\\psi=\\frac{d^2}{dx^2}\\big(xe^{-x^2}\\big)-4x^2\\cdot xe^{-x^2}=\\frac{d}{dx}\\big( e^{-x^2}-2x^2e^{-x^2}\\big)-4x^3e^{-x^2}= -2xe^{-x^2}-4xe^{-x^2}+4x^3e^{-x^2}-4x^3e^{-x^2}=-6xe^{-x^2}=-6\\psi"
So, "\\psi(x)" is an eigenfunction of "\\hat A" and the eigenvalue is "\\lambda=-6" .
Comments
Leave a comment