show that linear combination of eikx and e-ikx is a eigen function of d2/dx2
Let us consider the linear combination "\\psi(x) = C_1 e^{i k x} + C_2 e^{- i k x}", where "C_1, C_2" - constants. Then,
"\\frac{d^2}{d x^2} \\psi(x) = C_1 (i k)^2 e^{i k x} + C_2 (-i k)^2 e^{-i k x} = -k^2(C_1 e^{i k x} + C_2 e^{-i k x}) = - k^2 \\psi(x)".
Hence, "\\psi(x)" is an eigenfunction of differential operator "\\frac{d^2}{d x^2}" with corresponding eigenvalue "-k^2".
Comments
Leave a comment