Question #302872

Given the vectors 𝐴⃗=5𝑖̂+3𝑗̂+𝑘̂ and 𝐵⃗⃗=−3𝑖̂+2𝑗̂−4𝑘̂, find the following:

• 𝐴⃗ ∙ 𝐵⃗

• Angle between vector A and B

• 𝐴⃗ 𝑥 𝐵⃗


1
Expert's answer
2022-02-28T10:38:30-0500

(a)

AB=(5𝑖^+3𝑗^+𝑘^)(3𝑖^+2𝑗^4𝑘^)=15+64=13{\vec A}\cdot {\vec B}=(5𝑖̂+3𝑗̂+𝑘̂)\cdot(−3𝑖̂+2𝑗̂−4𝑘̂)\\ =-15+6-4=-13

(b)

θ=cos11352+32+12(3)2+22+(4)2=114\theta=\cos^{-1}\frac{-13}{\sqrt{5^2+3^2+1^2}\sqrt{(-3)^2+2^2+(-4)^2}}\\ =114^\circ

(c)

A×B=(5𝑖^+3𝑗^+𝑘^)×(3𝑖^+2𝑗^4𝑘^)=10𝑘^+20𝑗^+9𝑘^12𝑖^3𝑗^2𝑖^=14𝑖^+17𝑗^+19𝑘^{\vec A}\times {\vec B}=(5𝑖̂+3𝑗̂+𝑘̂)\times(−3𝑖̂+2𝑗̂−4𝑘̂)\\ =10𝑘̂+20𝑗̂+9𝑘̂-12𝑖̂-3𝑗̂-2𝑖̂\\ =-14𝑖̂+17𝑗̂+19𝑘̂


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS