Given the vectors π΄β=5πΜ+3πΜ+πΜ and π΅ββ=β3πΜ+2πΜβ4πΜ, find the following:
β’ π΄β β π΅β
β’ Angle between vector A and B
β’ π΄β π₯ π΅β
(a)
"{\\vec A}\\cdot {\\vec B}=(5\ud835\udc56\u0302+3\ud835\udc57\u0302+\ud835\udc58\u0302)\\cdot(\u22123\ud835\udc56\u0302+2\ud835\udc57\u0302\u22124\ud835\udc58\u0302)\\\\\n=-15+6-4=-13"(b)
"\\theta=\\cos^{-1}\\frac{-13}{\\sqrt{5^2+3^2+1^2}\\sqrt{(-3)^2+2^2+(-4)^2}}\\\\\n=114^\\circ"(c)
"{\\vec A}\\times {\\vec B}=(5\ud835\udc56\u0302+3\ud835\udc57\u0302+\ud835\udc58\u0302)\\times(\u22123\ud835\udc56\u0302+2\ud835\udc57\u0302\u22124\ud835\udc58\u0302)\\\\\n=10\ud835\udc58\u0302+20\ud835\udc57\u0302+9\ud835\udc58\u0302-12\ud835\udc56\u0302-3\ud835\udc57\u0302-2\ud835\udc56\u0302\\\\\n=-14\ud835\udc56\u0302+17\ud835\udc57\u0302+19\ud835\udc58\u0302"
Comments
Leave a comment