Question #300175

a particle moving with SHM has a speed of 8.0ms^-1 and an acceleration of 12ms^-2 when its is 3.0m from its equilibrium position. Find : (a) the amplitude of the motion, (b) the maximum velocity, (c) the maximum acceleration.


1
Expert's answer
2022-02-20T08:21:04-0500

Given:

v1=8.0  m/sv_1=8.0\;\rm m/s

a1=12.0  m/s2a_1=12.0\;\rm m/s^2

x1=3.0mx_1=3.0\:\rm m


A SHM is described by equations

x=Acosωtv=Aωsinωta=Aω2cosωtx=A\cos\omega t\\ v=-A\omega\sin\omega t\\ a=A\omega^2\cos\omega t

Hence, the frequency of oscillations

ω=a1/x1=12.0/3.0=2rad/s\omega=\sqrt{a_1/x_1}=\sqrt{12.0/3.0}=2\:\rm rad/s

(a) The amplitude of the motion

A=x12+(v1/ω)2=3.02+(8.0/2.0)2=5mA=\sqrt{x_1^2+(v_1/\omega)^2}=\sqrt{3.0^2+(8.0/2.0)^2}=5\:\rm m

(b) The maximum velocity

vmax=ωA=2.05.0=10.0m/sv_{\max}=\omega A=2.0*5.0=10.0\:\rm m/s

(c) The maximum acceleration

amax=ω2A=(2.0)25.0=20.0m/s2a_{\max}=\omega^2 A=(2.0)^2*5.0=20.0\:\rm m/s^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS