a particle moving with SHM has a speed of 8.0ms^-1 and an acceleration of 12ms^-2 when its is 3.0m from its equilibrium position. Find : (a) the amplitude of the motion, (b) the maximum velocity, (c) the maximum acceleration.
Given:
"v_1=8.0\\;\\rm m\/s"
"a_1=12.0\\;\\rm m\/s^2"
"x_1=3.0\\:\\rm m"
A SHM is described by equations
"x=A\\cos\\omega t\\\\\nv=-A\\omega\\sin\\omega t\\\\\na=A\\omega^2\\cos\\omega t"Hence, the frequency of oscillations
"\\omega=\\sqrt{a_1\/x_1}=\\sqrt{12.0\/3.0}=2\\:\\rm rad\/s"(a) The amplitude of the motion
"A=\\sqrt{x_1^2+(v_1\/\\omega)^2}=\\sqrt{3.0^2+(8.0\/2.0)^2}=5\\:\\rm m"(b) The maximum velocity
"v_{\\max}=\\omega A=2.0*5.0=10.0\\:\\rm m\/s"(c) The maximum acceleration
"a_{\\max}=\\omega^2 A=(2.0)^2*5.0=20.0\\:\\rm m\/s^2"
Comments
Leave a comment