derive an expression for planck's law of blackbody radiation using this law of wien's displacement law and stefan boltzmann law
Solution;
The probability that a single mode has energy "E_n=nhv"
is given by the usual Boltzmann factor;
"P(n)=\\frac{e^{\\frac{-E_n}{kT}}}{\\displaystyle\\sum_{n=0}^{\\infin}e^{\\frac{E_n}{kT}}}"
where the denominator ensures that the total probability is unity, the usual normalisation procedure.
In the language of photons, this is the probability
that the state contains n photons of frequency ν.The mean energy of the mode of frequency ν is therefore;
"\\bar{E_n}=\\displaystyle\\sum_{n=0}^{\\infin}E_np(n)=\\frac{\\displaystyle\\sum_{n=0}^{\\infin}E_ne^{\\frac{-E_n}{kT}}}{\\displaystyle\\sum{n=0}^{\\infin}e^{\\frac{-E_n}{kT}}}"
Which is;
"\\bar{E_n}=\\frac{\\displaystyle\\sum_{n=0}^{\\infin}nhv e^{\\frac{-nhv}{kT}}}{\\displaystyle\\sum_{n=0}^{\\infin}e^{\\frac{-nhv}{kT}}}"
To simplify the calculation we use ;
"e^{\\frac{-nhv}{kT}}=x"
We have;
"\\bar{E_n}=\\frac{hv \\displaystyle \\sum_{n=0}^{\\infin}nx^n}{\\displaystyle\\sum _{n=0}^{\\infin}x^n}=hv\\frac{x+2x^2+3x^3+...}{1+x+x^2+...}=hvx\\frac{1+2x+3x^2+...}{1+x+x^2+...}"
Now remember the following series expansion;
"\\frac{1}{1-x}=1+x+x^2+x^3+..."
"\\frac{1}{(1-x)^2}=1+2x+3x^2+..."
Hence, the mean energy of the mode is
"E=\\frac{hvx}{1-x}=\\frac {hv}{x^{-1}-1}=\\frac{hv}{e^{\\frac{hv}{kT}}-1}"
To find the classical limit, we allow the energy quanta hν to tend to zero. Expanding "e^{\\frac{hv}{kT}}" for small values of "\\frac{hv}{kT}"
"e^{\\frac{hv}{kT}}-1=1+\\frac{hv}{kT}+\\frac{1}{2!}(\\frac{hv}{kT})^2+...-1"
For small values of "\\frac{hv}{kT}" ;
"e^{\\frac{hv}{kT}}-1=\\frac{hv}{kT}"
And so;
"\\bar E=\\frac{hv}{e^{\\frac{hv}{kT}}-1}=\\frac{hv}{\\frac {\\epsilon}{kT}}=kT"
We can now complete the determination of Planck’s radiation formula. We know that the number of modes in the frequency interval ν to v+dv is "\\frac{8\u03c0v^2}{c^3}dv" per unit volume.
The energy density of radiation in the frequency range is;
"u(v)dv=\\frac{8\u03c0v^2}{c^3}\\bar{E_v}dv"
"u(v)dv=\\frac{8\u03c0v^2}{c^3}\\frac{1}{e^{\\frac{hv}{kT}}-1}"
Which is the Planck's distribution function.
Comments
Leave a comment