An ideal Otto engine, operating on the hot-air standard with k=1.34, has a
compression ratio of 5. At the beginning of compression the volume is 6ft3
, the
pressure is 15 psia and temperature is 100F. during constant – volume heating , 500
Btu are added per cycle. Compute Wnet, Qr, thermal Efficiency, and mean
effective pressure.
Solution;
Given;
k=1.34
"V_1=6ft^3"
"P_1=15psia"
"r=5"
"T_1=100F=560\u00b0R"
"Q_a=500Btu"
From the relation;
"\\frac{T_2}{T_1}=(\\frac{V_1}{V_2})^{k-1}=r^{k-1}"
"T_2=560\u00d75^{0.34}=968\u00b0R"
The mass can be obtained as;
"m=\\frac{PV}{RT}"
"m=\\frac{15\u00d7144\u00d76}{53.34\u00d7560}=0.4339lb"
We can find Cv as;
"C_v=\\frac{R}{k-1}=\\frac{53.34}{0.34}=156.88ft\/lb\u00b0R"
Heat added;
"Q_a=mC_v\\Delta T"
"Q_a=mC_v(T_3-T_2)"
From which we obtain "T_3" as;
"T_3=\\frac{Q_a}{mC_v}+T_2"
"T_3=\\frac{500\u00d7778}{0.4339\u00d7156.88}+968"
"T_3=6682.69\u00b0R"
"P_2=P_1r^k"
"P_2=15\u00d75^{1.34}=129.63psia"
"P_3=P_2(\\frac {T_3}{T_2})=129.63(\\frac{6682.69}{968})"
"P_3=894.93psia"
"T_4=T_3(\\frac {1}{r})^{k-1}"
"T_4=6682.69(\\frac15)^{0.34}"
"T_4=3866.47\u00b0R"
"Q_r=mC_v(T_1-T_4)"
"Q_r=0.4339\u00d7156.88(560-6682.69)"
"Q_r=535.70Btu"
Efficiency;
"\\eta=1-\\frac{1}{r^{k-1}}"
"\\eta=1-\\frac{1}{5^{0.34}}=0.4214"
"W_{net}=\\eta\u00d7Q_a"
"W_{net}=0.4214\u00d7500=210Btu"
Mean effective pressure;
"P_m=\\frac{W_net}{V_1-V_2}"
"V_2=\\frac{V_1}{r}=\\frac{6}{5}=1.2ft^3"
"P_m=\\frac{210\u00d7778}{(6-1.2)\u00d7144}"
"P_m=236.37psia"
Comments
Leave a comment