A reciprocating compressor draws in 500 ft3/min of air whose density is 0.079lbm/ft3 and discharges it with density of 0.304lbm/ft3. At the suction, р1 = 15 psia, at the discharge, р2 = 80 psia. The increase in the specific internal energy is 33.8 BTU/lbm. Determine the work on the air in BTU/min and in hp. Neglect change in kinetic energy.
First, we know that:
"v=500 \\frac{ft^3}{min}\n\\\\ p_1=15\\,psia; p_2=80\\,psia\n\\\\ \\rho_1=0.079\\frac{lb}{ft^3}; \\rho_2=0.304\\frac{lb}{ft^3}\n\\\\ \\Delta u=33.8\\frac{BTU}{lb}; Q=13\\frac{BTU}{lb}"
Then we use the energy balance of the system:
"p_1v_1-Q=p_2v_2+W+\\Delta u\n\\\\ \\implies W=p_1v_1-(Q+p_2v_2+\\Delta u)"
We proceed to find the work done and if we consider the relation "p_iv_i=p_i\/\\rho_i" then we can substitute all the terms and find W:
"W=\\cfrac{15\\frac{lb_f}{in^2}\\cdot \\frac{144\\,in^2}{ft^2}\\cdot \\frac{1\\,BTU}{778\\,lb_fft}}{0.079\\frac{lb}{ft^3}}-\\Bigg(33.8\\frac{BTU}{lb}+13\\frac{BTU}{lb}+\\cfrac{80\\frac{lb_f}{in^2}\\cdot \\frac{144\\,in^2}{ft^2}\\cdot \\frac{1\\,BTU}{778\\,lb_fft}}{0.304\\frac{lb}{ft^3}} \\Bigg)"
After substitution we find
"W=(35.1437-95.5079)\\frac{BTU}{lb}\n\\\\W=-60.3642\\frac{BTU}{lb}\\times\\frac{0.079\\,lb}{ft^3}\\times\\frac{500\\,ft^3}{min}\n\\\\ W=-2384.386\\frac{BTU}{min}\\times\\frac{1\\,hp}{42.4\\,BTU\/min}\n\\\\ W=-56.236\\,hp"
In conclusion, the work on the air in BTU/min and in hp is -2384.386 BTU/min and -56.236 hp, respectively.
Comments
Leave a comment