A gas with a velocity of 300 m/s is flowing through a horizontal pipe at a
section where pressure is 78 kN/m2 absolute and temperature 40°C. The pipe changes in diameter and at this section, the pressure is 117 kN/m2 absolute. Find the velocity of the gas at this
section if the flow of the gas is adiabatic. Take R = 287 J/kg K and γ = 1.4
Applying Bernoulli’s equations at sections 1 and 2 for an adiabatic process, we have:
"\\Big( \\cfrac{\\gamma}{\\gamma-1} \\Big) \\dfrac{p_1}{\\rho_1g} + \\dfrac{V^2_1}{2g} +z_1=\\Big( \\cfrac{\\gamma}{\\gamma-1} \\Big) \\dfrac{p_2}{\\rho_2g} + \\dfrac{V^2_2}{2g} +z_2"
For the following situation we know that p1=78 kN/m2 and p2=117 kN/m2, "T_1=40\\,{\u00b0C}=313\\,K", V1= 300 m/s, R = 287 J/kg K and γ = 1.4. Since this is a horizontal pipe "z_1=z_2" and we will remove "g" from the equations to simplify the expression:
"\\Big( \\cfrac{\\gamma}{\\gamma-1} \\Big) \\dfrac{p_1}{\\rho_1\\cancel{g}} + \\dfrac{V^2_1}{2\\cancel{g}} =\\Big( \\cfrac{\\gamma}{\\gamma-1} \\Big) \\dfrac{p_2}{\\rho_2\\cancel{g}} + \\dfrac{V^2_2}{2\\cancel{g}}"
Following this, we separate the terms of velocity from the density and pressure relations:
"\\Big( \\cfrac{\\gamma}{\\gamma-1} \\Big) \\dfrac{p_1}{\\rho_1} -\\Big( \\cfrac{\\gamma}{\\gamma-1} \\Big) \\dfrac{p_2}{\\rho_2}= \\dfrac{V^2_2}{2}-\\dfrac{V^2_1}{2}"
We continue to simplify because we need to find V2:
"V^2_2=V^2_1+\\Big( \\cfrac{2\\gamma}{\\gamma-1} \\Big)\\Big( \\dfrac{p_1}{\\rho_1} -\\dfrac{p_2}{\\rho_2} \\Big) =V^2_1+\\Big( \\cfrac{2\\gamma}{\\gamma-1} \\Big)\\dfrac{p_1}{\\rho_1}\\Big(1 -\\dfrac{\\rho_1}{p_1}\\dfrac{p_2}{\\rho_2} \\Big)"
From the adiabatic relations between the pressure and density, we can find the relation of densities in terms of the pressures:
"\\dfrac{p_1}{\\rho^{\\gamma}_1} =\\dfrac{p_2}{\\rho^{\\gamma}_2} \\implies \\dfrac{p_1}{p_2} =\\Big(\\cfrac{\\rho_1}{\\rho_2} \\Big)^{\\gamma}"
"\\implies \\cfrac{\\rho_1}{\\rho_2} =\\Big(\\dfrac{p_1}{p_2} \\Big)^{1\/\\gamma}"
We substitute the last expression for "V^2_2" to have:
"V^2_2=V^2_1+\\big( \\frac{2\\gamma}{\\gamma-1} \\big)\\dfrac{p_1}{\\rho_1}\\bigg(1 -\\dfrac{p_2}{p_1} \\Big(\\dfrac{p_1}{p_2} \\Big)^{1\/\\gamma} \\bigg)"
Following simplification gives us a new expression for "V^2_2" :
"V^2_2=V^2_1+\\big( \\frac{2\\gamma}{\\gamma-1} \\big)\\dfrac{p_1}{\\rho_1}\\bigg(1 - \\Big(\\dfrac{p_2}{p_1} \\Big)^{1-1\/\\gamma} \\bigg)"
Now we have an espression that will give us the value for V2, but we need to know or calculate the following:
"\\dfrac{p_1}{\\rho_1}=RT_1=(287 \\frac{J}{kg K})(313\\,K)=89831 \\frac{m^2}{s^2}"
"\\dfrac{p_2}{p_1}=\\dfrac{117\\frac{kN}{m^2}}{78\\frac{kN}{m^2}}=1.5"
After that we continue with the substitution:
"V^2_2=(300\\frac{m}{s})^2+\\big( \\frac{2(1.4)}{1.4-1} \\big)(89831\\frac{m^2}{s^2})\\bigg(1 - \\Big(1.5 \\Big)^{1-\\frac{1}{1.4}} \\bigg)"
At last, we have:
"V^2_2=12781.27\\cfrac{m^2}{s^2}\\implies V_2=113.05\\cfrac{m}{s}"
In conclusion the velocity of the gas at th second section is "V_2=113.05\\cfrac{m}{s}" .
Reference:
Comments
Leave a comment