Applying Bernoulli’s equations at sections 1 and 2 for an adiabatic process, we have:
( γ γ − 1 ) p 1 ρ 1 g + V 1 2 2 g + z 1 = ( γ γ − 1 ) p 2 ρ 2 g + V 2 2 2 g + z 2 \Big( \cfrac{\gamma}{\gamma-1} \Big) \dfrac{p_1}{\rho_1g} + \dfrac{V^2_1}{2g} +z_1=\Big( \cfrac{\gamma}{\gamma-1} \Big) \dfrac{p_2}{\rho_2g} + \dfrac{V^2_2}{2g} +z_2 ( γ − 1 γ ) ρ 1 g p 1 + 2 g V 1 2 + z 1 = ( γ − 1 γ ) ρ 2 g p 2 + 2 g V 2 2 + z 2
For the following situation we know that p1 =78 kN/m2 and p2 =117 kN/m2 , T 1 = 40 ° C = 313 K T_1=40\,{°C}=313\,K T 1 = 40 ° C = 313 K , V1 = 300 m/s, R = 287 J/kg K and γ = 1.4. Since this is a horizontal pipe z 1 = z 2 z_1=z_2 z 1 = z 2 and we will remove g g g from the equations to simplify the expression:
( γ γ − 1 ) p 1 ρ 1 g + V 1 2 2 g = ( γ γ − 1 ) p 2 ρ 2 g + V 2 2 2 g \Big( \cfrac{\gamma}{\gamma-1} \Big) \dfrac{p_1}{\rho_1\cancel{g}} + \dfrac{V^2_1}{2\cancel{g}} =\Big( \cfrac{\gamma}{\gamma-1} \Big) \dfrac{p_2}{\rho_2\cancel{g}} + \dfrac{V^2_2}{2\cancel{g}} ( γ − 1 γ ) ρ 1 g p 1 + 2 g V 1 2 = ( γ − 1 γ ) ρ 2 g p 2 + 2 g V 2 2
Following this, we separate the terms of velocity from the density and pressure relations:
( γ γ − 1 ) p 1 ρ 1 − ( γ γ − 1 ) p 2 ρ 2 = V 2 2 2 − V 1 2 2 \Big( \cfrac{\gamma}{\gamma-1} \Big) \dfrac{p_1}{\rho_1} -\Big( \cfrac{\gamma}{\gamma-1} \Big) \dfrac{p_2}{\rho_2}= \dfrac{V^2_2}{2}-\dfrac{V^2_1}{2} ( γ − 1 γ ) ρ 1 p 1 − ( γ − 1 γ ) ρ 2 p 2 = 2 V 2 2 − 2 V 1 2
We continue to simplify because we need to find V2 :
V 2 2 = V 1 2 + ( 2 γ γ − 1 ) ( p 1 ρ 1 − p 2 ρ 2 ) = V 1 2 + ( 2 γ γ − 1 ) p 1 ρ 1 ( 1 − ρ 1 p 1 p 2 ρ 2 ) V^2_2=V^2_1+\Big( \cfrac{2\gamma}{\gamma-1} \Big)\Big( \dfrac{p_1}{\rho_1} -\dfrac{p_2}{\rho_2} \Big) =V^2_1+\Big( \cfrac{2\gamma}{\gamma-1} \Big)\dfrac{p_1}{\rho_1}\Big(1 -\dfrac{\rho_1}{p_1}\dfrac{p_2}{\rho_2} \Big) V 2 2 = V 1 2 + ( γ − 1 2 γ ) ( ρ 1 p 1 − ρ 2 p 2 ) = V 1 2 + ( γ − 1 2 γ ) ρ 1 p 1 ( 1 − p 1 ρ 1 ρ 2 p 2 )
From the adiabatic relations between the pressure and density, we can find the relation of densities in terms of the pressures:
p 1 ρ 1 γ = p 2 ρ 2 γ ⟹ p 1 p 2 = ( ρ 1 ρ 2 ) γ \dfrac{p_1}{\rho^{\gamma}_1} =\dfrac{p_2}{\rho^{\gamma}_2} \implies \dfrac{p_1}{p_2} =\Big(\cfrac{\rho_1}{\rho_2} \Big)^{\gamma} ρ 1 γ p 1 = ρ 2 γ p 2 ⟹ p 2 p 1 = ( ρ 2 ρ 1 ) γ
⟹ ρ 1 ρ 2 = ( p 1 p 2 ) 1 / γ \implies \cfrac{\rho_1}{\rho_2} =\Big(\dfrac{p_1}{p_2} \Big)^{1/\gamma} ⟹ ρ 2 ρ 1 = ( p 2 p 1 ) 1/ γ
We substitute the last expression for V 2 2 V^2_2 V 2 2 to have:
V 2 2 = V 1 2 + ( 2 γ γ − 1 ) p 1 ρ 1 ( 1 − p 2 p 1 ( p 1 p 2 ) 1 / γ ) V^2_2=V^2_1+\big( \frac{2\gamma}{\gamma-1} \big)\dfrac{p_1}{\rho_1}\bigg(1 -\dfrac{p_2}{p_1} \Big(\dfrac{p_1}{p_2} \Big)^{1/\gamma} \bigg) V 2 2 = V 1 2 + ( γ − 1 2 γ ) ρ 1 p 1 ( 1 − p 1 p 2 ( p 2 p 1 ) 1/ γ )
Following simplification gives us a new expression for V 2 2 V^2_2 V 2 2 :
V 2 2 = V 1 2 + ( 2 γ γ − 1 ) p 1 ρ 1 ( 1 − ( p 2 p 1 ) 1 − 1 / γ ) V^2_2=V^2_1+\big( \frac{2\gamma}{\gamma-1} \big)\dfrac{p_1}{\rho_1}\bigg(1 - \Big(\dfrac{p_2}{p_1} \Big)^{1-1/\gamma} \bigg) V 2 2 = V 1 2 + ( γ − 1 2 γ ) ρ 1 p 1 ( 1 − ( p 1 p 2 ) 1 − 1/ γ )
Now we have an espression that will give us the value for V2 , but we need to know or calculate the following:
p 1 ρ 1 = R T 1 = ( 287 J k g K ) ( 313 K ) = 89831 m 2 s 2 \dfrac{p_1}{\rho_1}=RT_1=(287 \frac{J}{kg K})(313\,K)=89831 \frac{m^2}{s^2} ρ 1 p 1 = R T 1 = ( 287 k g K J ) ( 313 K ) = 89831 s 2 m 2
p 2 p 1 = 117 k N m 2 78 k N m 2 = 1.5 \dfrac{p_2}{p_1}=\dfrac{117\frac{kN}{m^2}}{78\frac{kN}{m^2}}=1.5 p 1 p 2 = 78 m 2 k N 117 m 2 k N = 1.5
After that we continue with the substitution:
V 2 2 = ( 300 m s ) 2 + ( 2 ( 1.4 ) 1.4 − 1 ) ( 89831 m 2 s 2 ) ( 1 − ( 1.5 ) 1 − 1 1.4 ) V^2_2=(300\frac{m}{s})^2+\big( \frac{2(1.4)}{1.4-1} \big)(89831\frac{m^2}{s^2})\bigg(1 - \Big(1.5 \Big)^{1-\frac{1}{1.4}} \bigg) V 2 2 = ( 300 s m ) 2 + ( 1.4 − 1 2 ( 1.4 ) ) ( 89831 s 2 m 2 ) ( 1 − ( 1.5 ) 1 − 1.4 1 )
At last, we have:
V 2 2 = 12781.27 m 2 s 2 ⟹ V 2 = 113.05 m s V^2_2=12781.27\cfrac{m^2}{s^2}\implies V_2=113.05\cfrac{m}{s} V 2 2 = 12781.27 s 2 m 2 ⟹ V 2 = 113.05 s m
In conclusion the velocity of the gas at th second section is V 2 = 113.05 m s V_2=113.05\cfrac{m}{s} V 2 = 113.05 s m .
Reference:
Rajput, R. K. (2005). A textbook of engineering thermodynamics . Laxmi Publications.
Comments