Question #239566

An aeroplane is flying at 1000 km/h through still air having a pressure of

78.5 kN/m2 (abs.) and temperature – 8°C. Calculate on the stagnation point on the nose of the

plane :

(i) Stagnation pressure,

(ii) Stagnation temperature, and

(iii) Stagnation density.

Take for air : R = 287 J/kg K and γ = 1.4


1
Expert's answer
2021-09-20T06:12:56-0400

The sonic velocity for adiabatic flow is given by C0=γRTC_0=\sqrt{\gamma RT} and then the Mach number as M0=V0C0M_0=\cfrac{V_0}{C_0}. These values need to be calculated because the stagnation pressure is given by


ps=p0[1+(γ12)M02]γγ1p_s=p_0 {\Big[ 1+\Big( \dfrac{\gamma-1}{2} \Big){M_0}^2 \Big]}^{\dfrac{\gamma}{\gamma-1}}


If we substitute the prior equation we have the following relation between all the variables we have and the stagnation pressure:

ps=p0[1+(γ12γRT)V02]γγ1p_s=p_0 {\Big[ 1+\Big( \dfrac{\gamma-1}{2\gamma RT} \Big){V_0}^2 \Big]}^{\dfrac{\gamma}{\gamma-1}}


We proceed to substitute and calculate with

p0=78.5kN/m2T0=8+273=265KR=287J/kgKγ=1.4p_0=78.5\,{kN/m^2} \\T_0=-8+273=265 \,K \\R=287\,J/kgK \\ \gamma=1.4

V0=1000kmh×1000m1km×1h3600s    V0=277.77m/sV_0=\cfrac{1000\,km}{h}\times\cfrac{1000\,m}{1\,km}\times\cfrac{1\,h}{3600\,s} \\ \implies V_0=277.77\,{m/s}


and we find:

ps=(78.5kN/m2)[1+(1.412(1.4)(287J/kgK)(265K))(277.77m/s)2]1.41.41     ps=(78.5kN/m2)[1.14492552]3.5 ps=126.064kN/m2p_s=(78.5\,kN/m^2) {\bigg[ 1+\Big( \dfrac{1.4-1}{2(1.4)(287\,{J/kgK})(265\,K)} \Big){(277.77\,{m/s})}^2 \bigg]}^{\cfrac{1.4}{1.4-1}} \\ \text{ } \\ \implies p_s=(78.5\,kN/m^2) {\Big[ 1.14492552 \Big]}^{3.5} \\ \text{ } \\ p_s=126.064\,{kN/m^2}


(b) The stagnation temperature is given by


Ts=T0[1+(γ12)M02]    Ts=T0[1+(γ12γRT)V02]T_s=T_0 {\Big[ 1+( \frac{\gamma-1}{2} ){M_0}^2 \Big]} \\ \implies T_s=T_0{\Big[ 1+\Big( \dfrac{\gamma-1}{2\gamma RT} \Big){V_0}^2 \Big]}


After the same substitution we can find the temperature:


Ts=(265K)[1+(1.412(1.4)(287J/kgK)(265K))(277.77m/s)2] Ts=(265K)[1.14492552]     Ts=303.4K=30.4°CT_s=(265\,K) {\Big[ 1+\Big( \dfrac{1.4-1}{2(1.4)(287\,{J/kgK})(265\,K)} \Big){(277.77\,{m/s})}^2 \Big]} \\ \text { } \\ T_s=(265\,K) {\Big[ 1.14492552 \Big]} \\ \text { } \\ \implies T_s=303.4\,K =30.4°C


(c) At last, the stagnation density (ρs) is given by


psρs=RTs    ρs=psRTs\cfrac{p_s}{\rho_s}=RT_s \implies \rho_s = \cfrac{p_s}{RT_s }


We substitute the prior values and we find


ρs=126064N/m2(287J/kgK)(303.4K)     ρs=1.448kg/m3\rho_s = \cfrac{126064\,{N/m^2}}{(287\,{J/kgK})(303.4\,K)} \\ \text { } \\ \implies \rho_s =1.448\,{kg/m^3}


In conclusion, (i) the stagnation pressure is ps=126.064kN/m2p_s=126.064\,{kN/m^2} , while the (ii) stagnation temperature is Ts=303.4K=30.4°CT_s=303.4\,K =30.4°C, and (iii) the stagnation density is ρs=1.448kg/m3\rho_s =1.448\,{kg/m^3}.

Reference:

  • Rajput, R. K. (2005). A textbook of engineering thermodynamics. Laxmi Publications.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS