An aeroplane is flying at 1000 km/h through still air having a pressure of
78.5 kN/m2 (abs.) and temperature – 8°C. Calculate on the stagnation point on the nose of the
plane :
(i) Stagnation pressure,
(ii) Stagnation temperature, and
(iii) Stagnation density.
Take for air : R = 287 J/kg K and γ = 1.4
The sonic velocity for adiabatic flow is given by "C_0=\\sqrt{\\gamma RT}" and then the Mach number as "M_0=\\cfrac{V_0}{C_0}". These values need to be calculated because the stagnation pressure is given by
"p_s=p_0 {\\Big[ 1+\\Big( \\dfrac{\\gamma-1}{2} \\Big){M_0}^2 \\Big]}^{\\dfrac{\\gamma}{\\gamma-1}}"
If we substitute the prior equation we have the following relation between all the variables we have and the stagnation pressure:
"p_s=p_0 {\\Big[ 1+\\Big( \\dfrac{\\gamma-1}{2\\gamma RT} \\Big){V_0}^2 \\Big]}^{\\dfrac{\\gamma}{\\gamma-1}}"
We proceed to substitute and calculate with
"p_0=78.5\\,{kN\/m^2}\n\\\\T_0=-8+273=265 \\,K\n\\\\R=287\\,J\/kgK\n\\\\ \\gamma=1.4"
"V_0=\\cfrac{1000\\,km}{h}\\times\\cfrac{1000\\,m}{1\\,km}\\times\\cfrac{1\\,h}{3600\\,s}\n\\\\ \\implies V_0=277.77\\,{m\/s}"
and we find:
"p_s=(78.5\\,kN\/m^2) {\\bigg[ 1+\\Big( \\dfrac{1.4-1}{2(1.4)(287\\,{J\/kgK})(265\\,K)} \\Big){(277.77\\,{m\/s})}^2 \\bigg]}^{\\cfrac{1.4}{1.4-1}}\n\\\\ \\text{ }\n\\\\ \\implies p_s=(78.5\\,kN\/m^2) {\\Big[ 1.14492552 \\Big]}^{3.5}\n\\\\ \\text{ }\n\\\\ p_s=126.064\\,{kN\/m^2}"
(b) The stagnation temperature is given by
"T_s=T_0 {\\Big[ 1+( \\frac{\\gamma-1}{2} ){M_0}^2 \\Big]}\n\\\\ \\implies T_s=T_0{\\Big[ 1+\\Big( \\dfrac{\\gamma-1}{2\\gamma RT} \\Big){V_0}^2 \\Big]}"
After the same substitution we can find the temperature:
"T_s=(265\\,K) {\\Big[ 1+\\Big( \\dfrac{1.4-1}{2(1.4)(287\\,{J\/kgK})(265\\,K)} \\Big){(277.77\\,{m\/s})}^2 \\Big]}\n\\\\ \\text { }\n\\\\ T_s=(265\\,K) {\\Big[ 1.14492552 \\Big]} \n\\\\ \\text { }\n\\\\ \\implies T_s=303.4\\,K =30.4\u00b0C"
(c) At last, the stagnation density (ρs) is given by
"\\cfrac{p_s}{\\rho_s}=RT_s \\implies \\rho_s = \\cfrac{p_s}{RT_s }"
We substitute the prior values and we find
"\\rho_s = \\cfrac{126064\\,{N\/m^2}}{(287\\,{J\/kgK})(303.4\\,K)}\n\\\\ \\text { }\n\\\\ \\implies \\rho_s =1.448\\,{kg\/m^3}"
Reference:
Comments
Leave a comment