Let us determine the distance OB:
O B 2 = O A 2 + A B 2 − 2 O A ⋅ A B cos ( 6 0 ∘ − 4 5 ∘ ) , O B 2 = 3 0 2 + 4 0 2 − 2 ⋅ 30 ⋅ 40 cos 1 5 ∘ , O B = 13.5 m . OB^2 = OA^2+AB^2 - 2OA\cdot AB\cos(60^\circ-45^\circ),\\
OB^2 = 30^2+40^2 - 2\cdot30\cdot40\cos15^\circ,\\
OB = 13.5\,\mathrm{m}. O B 2 = O A 2 + A B 2 − 2 O A ⋅ A B cos ( 6 0 ∘ − 4 5 ∘ ) , O B 2 = 3 0 2 + 4 0 2 − 2 ⋅ 30 ⋅ 40 cos 1 5 ∘ , OB = 13.5 m .
sin ∠ A O B A B = sin O A B O B , ∠ A O B = 13 0 ∘ . ∠ B O W = 18 0 ∘ − 13 0 ∘ − 4 5 ∘ = 5 ∘ . \dfrac{\sin\angle AOB}{AB} = \dfrac{\sin OAB}{OB}, \\
\angle AOB = 130^\circ. \\
\angle BOW = 180^\circ - 130^\circ - 45^\circ = 5^\circ. A B sin ∠ A OB = OB sin O A B , ∠ A OB = 13 0 ∘ . ∠ BO W = 18 0 ∘ − 13 0 ∘ − 4 5 ∘ = 5 ∘ .
∠ O B W = 9 0 ∘ − ∠ B O W = 8 5 ∘ . \angle OBW = 90^\circ -\angle BOW = 85^\circ. ∠ OB W = 9 0 ∘ − ∠ BO W = 8 5 ∘ .
∣ R ⃗ ∣ = O C − ? O C 2 = B C 2 + O B 2 − 2 B C ⋅ O B cos ∠ O B W , O C = 50.6 m . |\vec{R}|=OC -?\\
OC^2= BC^2 + OB^2 - 2BC\cdot OB\cos\angle OBW,\\
OC = 50.6\,\mathrm{m}. ∣ R ∣ = OC − ? O C 2 = B C 2 + O B 2 − 2 BC ⋅ OB cos ∠ OB W , OC = 50.6 m .
sin ∠ B O C B C = sin ∠ O B W O C , ∠ B O C = 8 0 ∘ . ∠ C O S = 9 0 ∘ − ( ∠ B O C − ∠ B O W ) = 1 5 ∘ . \dfrac{\sin\angle BOC}{BC} = \dfrac{\sin\angle OBW}{OC}, \;
\angle BOC = 80^\circ.\\
\angle COS = 90^\circ - (\angle BOC - \angle BOW) = 15^\circ. BC sin ∠ BOC = OC sin ∠ OB W , ∠ BOC = 8 0 ∘ . ∠ COS = 9 0 ∘ − ( ∠ BOC − ∠ BO W ) = 1 5 ∘ .
Let us determine the parameters of R using the coordinate method.
R ⃗ x = O A ⃗ x + A B ⃗ x + B C ⃗ x , R ⃗ x = 30 cos 4 5 ∘ + 40 cos ( 18 0 ∘ + 3 0 ∘ ) + 50 cos 27 0 ∘ , R ⃗ x = − 13.4. R ⃗ y = O A ⃗ y + A B ⃗ y + B C ⃗ y , R ⃗ y = 30 sin 4 5 ∘ + 40 sin ( 18 0 ∘ + 3 0 ∘ ) + 50 sin 27 0 ∘ , R ⃗ y = − 48.8. \vec{R}_x = \vec{OA}_x + \vec{AB}_x + \vec{BC}_x, \\
\vec{R}_x =30\cos45^\circ + 40\cos(180^\circ + 30^\circ) + 50\cos270^\circ, \\
\vec{R}_x = -13.4.
\\
\vec{R}_y = \vec{OA}_y + \vec{AB}_y + \vec{BC}_y, \\
\vec{R}_y =30\sin45^\circ + 40\sin(180^\circ + 30^\circ) + 50\sin270^\circ, \\
\vec{R}_y = -48.8. R x = O A x + A B x + BC x , R x = 30 cos 4 5 ∘ + 40 cos ( 18 0 ∘ + 3 0 ∘ ) + 50 cos 27 0 ∘ , R x = − 13.4. R y = O A y + A B y + BC y , R y = 30 sin 4 5 ∘ + 40 sin ( 18 0 ∘ + 3 0 ∘ ) + 50 sin 27 0 ∘ , R y = − 48.8.
Comments