Answer to Question #309400 in Mechanics | Relativity for Lipika

Question #309400

The displacement of an object executing simple harmonic oscillations is given by:


x = 0.02 sin 2π ( t + 0.01 ) m


Determine (a) amplitude of the oscillatory motion, (b) time period of oscillation , (c) maximum velocity, (d) maximum acceleration, and (e) initial displacement of the object.

1
Expert's answer
2022-03-13T18:49:30-0400

Solution.

x=0.02sin2π(t+0.01)=0.02sin(2πt+0.02π)m;x=0.02sin2\pi(t+0.01)=0.02sin(2\pi t+0.02\pi)m;

x=Asin(ωt+ϕ0);x=Asin(\omega t+\phi_0);

a)A=0.02m;a)A=0.02m;

b)ω=2πT    T=2πω;b)\omega=\dfrac{2\pi}{T}\implies T=\dfrac{2\pi}{\omega}; ω=2πs;\omega=2\pi s;

T=2π2π=1s;T=\dfrac{2\pi}{2\pi}=1s;

c)vmax=Aω;c)v_{max}=A\omega;

vmax=0.0223.14=0.1256m/s;v_{max}=0.02\sdot2\sdot3.14=0.1256m/s;

d)amax=Aω2;d) a_{max}=A\omega^2;

amax=0.02(23.14)2=0.789m/s2;a_{max}=0.02\sdot(2\sdot 3.14)^2=0.789 m/s^2;

e)x0=0.02sin0.02π=0.0011m;e)x_0=0.02sin0.02\pi=0.0011m;

Answer: a)A=0.02m;a)A=0.02m;

b)T=1s;b)T=1s;

c)vmax=0.1256m/s;c)v_{max}=0.1256m/s;

d)amax=0.789m/s2;d)a_{max}=0.789 m/s^2;

e)x0=0.0011m.e)x_0=0.0011m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment