The displacement of an object executing simple harmonic oscillations is given by:
x = 0.02 sin 2π ( t + 0.01 ) m
Determine (a) amplitude of the oscillatory motion, (b) time period of oscillation , (c) maximum velocity, (d) maximum acceleration, and (e) initial displacement of the object.
Solution.
"x=0.02sin2\\pi(t+0.01)=0.02sin(2\\pi t+0.02\\pi)m;"
"x=Asin(\\omega t+\\phi_0);"
"a)A=0.02m;"
"b)\\omega=\\dfrac{2\\pi}{T}\\implies T=\\dfrac{2\\pi}{\\omega};" "\\omega=2\\pi s;"
"T=\\dfrac{2\\pi}{2\\pi}=1s;"
"c)v_{max}=A\\omega;"
"v_{max}=0.02\\sdot2\\sdot3.14=0.1256m\/s;"
"d) a_{max}=A\\omega^2;"
"a_{max}=0.02\\sdot(2\\sdot 3.14)^2=0.789 m\/s^2;"
"e)x_0=0.02sin0.02\\pi=0.0011m;"
Answer: "a)A=0.02m;"
"b)T=1s;"
"c)v_{max}=0.1256m\/s;"
"d)a_{max}=0.789 m\/s^2;"
"e)x_0=0.0011m."
Comments
Leave a comment