Answer to Question #307655 in Mechanics | Relativity for Precious

Question #307655

projectile is fired with an initial velocity of 193.2 feet per second upward at angle of 300to the horizontal from point 257.6 feet above a level plain. What horizontal distance will it cover before it strikes the level plain? A dart is thrown horizontally with an initial speed of 10 m/s toward point P, the bull's-eye on a dart board. It hits at point Q on the rim, vertically below P, 0.2 s later. What is the distance PQ? How far away from the dart board is the dart released? 3 Find the angle of elevation of a gun which fires a shell with muzzle velocity 366 m/s at a target on the same level but 4,575 m distant.





1
Expert's answer
2022-03-08T09:40:56-0500

Explanations & Calculations


  • Gravitational acceleration "\\small \\approx 9.8\\,ms^{-2}\\approx32.17\\,ms^{-2}"

a)

  • Apply suitable formula out of the 4 for both horizontal and vertical motions of the projectile.

"\\qquad\\qquad\n\\begin{aligned}\n\\small \\uparrow\\\\\n\\small -257.6\\,ft&=\\small (193.2\\sin30)\\,fts^{-1}\\times t+\\frac{1}{2}\\times(-32.17\\,fts^{-2})\\times t^2\\\\\n\\small t&=\\small 8.0\\quad or\\quad-2.0\\\\\n\\small t&=\\small 8.0\\,s\n\\end{aligned}"

  • Then the horizontal coverage would be

"\\qquad\\qquad\n\\begin{aligned}\n\\small \\to\\\\\n\\small s&=\\small ut\\\\\n&=\\small 193.2.\\cos30\\,fts^{-1}\\times8.0\\,s \\\\\n&=\\small 1338.5\\,ft\n\\end{aligned}"


b)

  • Apply "\\small s= ut+1\/2at^2" downwards for the travel for that time.


"\\qquad\\qquad\n\\begin{aligned}\n\\small \\downarrow\\\\\n\\small d&=\\small 0+\\frac{1}{2}\\times(+9.8\\,ms^{-2})\\times(0.2\\,s)^2\\\\\n&\\approx\\small 0.2\\,m\n\\end{aligned}"

  • Apply the same formula for the dart's horizontal motion.

"\\qquad\\qquad\n\\begin{aligned}\n\\small \\to\\\\\n\\small &=\\small 10\\,ms^{-1}\\times0.2\\,s\\\\\n&=\\small 2\\,m\n\\end{aligned}"


c)

  • Apply the standard formula for the horizontal range of a projectile for this case.

"\\qquad\\qquad\n\\begin{aligned}\n\\small R&=\\small \\frac{v^2}{g}.\\sin2\\theta\\\\\n\\small 4575\\,m&=\\small \\frac{(366\\,ms^{-1})^2}{9.8\\,ms^{-2}}.\\sin2\\theta\\\\\n\\small \\sin2\\theta&=\\small 0.33\\\\\n\\theta &=\\small 9.6^0\\\\\n\\because\\,\\small\\sin2\\theta&=\\small\\cos(90-2\\theta)\\\\\n\\theta &=\\small90-9.6=80.4^0\\\\\n\\therefore\\,\\small \\theta&=\\small 9.6^0\\quad or\\quad 80.4^0\n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS