An object is projected with a velocity U at an angle R to the horizontal.It just clears two walls of equal height b and at a distance of b apart. Show that 2U cosR√(U² sin²R - 2bg) = bg?
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small V^2&=\\small (U\\sin R)^2+2(-g)b\\\\\n\\small V&=\\small \\sqrt{U^2\\sin^2 R-2gb}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\to\\\\\n\\small s&=\\small ut\\\\\n\\small b&=\\small U\\cos R.t\\\\\n\\small t&=\\small \\frac{b}{U\\cos R}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\uparrow\\\\\n\\small s&=\\small ut+1\/2at^2\\\\\n\\small 0&=\\small Vt+\\frac{1}{2}(-g)t^2\\\\\n\\small t&=\\small \\frac{2V}{g}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{2V}{g}&=\\small \\frac{b}{U\\cos R}\\\\\n\\small 2U\\cos R.V&=\\small gb\\\\\n\\small bg&=\\small 2U\\cos R.\\sqrt{U^2\\sin^2 R-2gb}\n\\end{aligned}"
Comments
Leave a comment