A car of mass 8000kg moves in a circular path of radius 100m with a linear velocity of 50m/s.Calculate the i) Angular velocity ii) Angle the tyre makes with the ground iii) condition for skidding for u(coefficient of friction)= 0.5?
Explanations & Calculations
a)
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\omega&=\\small \\frac{v^2}{r}\\\\\n&=\\small \\frac{(50\\,ms^{-1})^2}{100\\,m}\\\\\n&=\\small 25\\,rads^{-1}\n\\end{aligned}"
b)
"\\qquad\\qquad\n\\begin{aligned}\n\\small R\\cos\\theta&=\\small \\frac{mv^2}{r}\\\\\n\\small R\\sin\\theta&=\\small mg\\\\\n\\small \\tan\\theta&=\\small \\frac{rg}{v^2}\\\\\n\\small \\theta&=\\small \\tan^{-1}\\Big[\\frac{100\\times9.8}{50^2} \\Big]\n\\end{aligned}" You can try getting the answer
c) The maximum possible speeding without skidding is when the maximum friction from the ground is possible. Apply F=ma towards the centre.
"\\qquad\\qquad\n\\begin{aligned}\n\\small F_{max}&=\\small ma_{max}\\\\\n\\small \\mu R&=\\small m\\frac{v_{max}^2}{r}\\\\\n\\small \\mu mg&=\\small \\frac{mv_{max}^2}{r}\\\\\n\\small v_{max}&=\\small \\sqrt{\\mu gr}\\\\\n&=\\small \\sqrt{0.5\\times9.8\\times100}\n\\end{aligned}" Give it a try.
Comments
Leave a comment