Write the mathematical expressions for dv in spherical and cylindrical coordinates.
First, for the cylindrical coordinates we have
"x=r \\cos\\theta\n\\\\ y=r\\sin\\theta\n\\\\ z=z"
Then, we use the jacobian to perform the change of variables "(x,y,z)\\to(r,\\theta,z)" and for this particular case:
"dV_{cylindrical}=J^* {dr}{d\\theta}{dz},\n\\\\ \\text{where J* is the jacobian:}\n\n\\\\ J^*=\\text{absolute value of }det \\begin{vmatrix}\n x_{r} & x_{\\theta} & x_{z} \\\\\n y_{r} & y_{\\theta} & y_{z} \\\\\n z_{r} & z_{\\theta} & z_{z}\n\\end{vmatrix}\n\\\\ \\text{we compute the partial}\n\\\\ \\text{derivatives to find:}\n\\\\ J^*= \\begin{vmatrix}\n \\cos \\theta & -r \\sin \\theta & 0 \\\\\n \\sin \\theta & r \\cos \\theta & 0 \\\\\n 0 & 0 & 1\n\\end{vmatrix}\n\\\\ J^*= (1)\\begin{vmatrix}\n \\cos \\theta & -r \\sin \\theta \\\\\n \\sin \\theta & r \\cos \\theta\n\\end{vmatrix}\n\\\\ \\text{ }\n\\\\\\implies J^*=r(\\cos^2\\theta+\\sin^2\\theta)=r"
Now, for the spherical coordinates, we have
"x=\\rho \\sin\\phi\\cos\\theta\n\\\\ y=\\rho \\sin\\phi\\sin\\theta\n\\\\ z=\\rho\\cos\\phi"
and the volume differential (for the new change of variables "(x,y,z)\\to(\\rho,\\phi,\\theta)") is defined as
"dV_{spherical}=J {d\\rho}{d\\phi}{d\\theta},\n\\\\ \\text{where J is the jacobian:}\n\n\\\\ J=\\text{absolute value of }det \\begin{vmatrix}\n x_{\\rho} & x_{\\phi} & x_{\\theta} \\\\\n y_{\\rho} & y_{\\phi} & y_{\\theta} \\\\\n z_{\\rho} & z_{\\phi} & z_{\\theta}\n\\end{vmatrix}\n\\\\ \\text{we compute the partial}\n\\\\ \\text{derivatives to find:}\n\\\\ J= \\begin{vmatrix}\n \\sin \\phi \\cos \\theta & \\rho \\cos \\phi \\cos \\theta & - \\rho \\sin \\phi \\sin \\theta \\\\\n \\sin \\phi \\sin \\theta & \\rho \\cos \\phi \\sin \\theta & \\rho \\sin \\phi \\cos \\theta \\\\\n \\cos \\phi & - \\rho \\sin \\phi & 0\n\\end{vmatrix}\n\\\\ \\text{ }\n\\\\ \\implies J= \\cos\\phi \\begin{vmatrix}\n \\rho \\cos \\phi \\cos \\theta & - \\rho \\sin \\phi \\sin \\theta \\\\\n \\rho \\cos \\phi \\sin \\theta &\\rho \\sin \\phi \\cos \\theta\n\\end{vmatrix}+\\rho \\sin\\phi \\begin{vmatrix}\n \\sin \\phi \\cos \\theta & - \\rho \\sin \\phi \\sin \\theta \\\\\n \\sin \\phi \\sin \\theta & \\rho \\sin \\phi \\cos \\theta \n\\end{vmatrix}"
Then we continue to reduce and solve the determinants to find J:
"J=\\cos \\phi (\\rho^2\\sin\\phi\\cos\\phi\\cos^2\\theta+\\rho^2\\sin\\phi\\cos\\phi\\sin^2\\theta)+...\n\\\\ ...+(\\rho\\sin\\theta)( \\rho\\sin^2\\phi\\cos^2\\theta+\\rho\\sin^2\\phi\\sin^2\\theta )\n\\\\ \\text{once we reduce and use trigonometric identities},\n\\\\ \\text{ we find } J=\\rho^2 \\sin \\phi"
Reference:
Comments
Leave a comment