Write the mathematical expressions for dv in spherical and cylindrical coordinates.
1
Expert's answer
2021-10-03T13:23:24-0400
First, for the cylindrical coordinates we have
x=rcosθy=rsinθz=z
Then, we use the jacobian to perform the change of variables (x,y,z)→(r,θ,z) and for this particular case:
dVcylindrical=J∗drdθdz,where J* is the jacobian:J∗=absolute value of det∣∣xryrzrxθyθzθxzyzzz∣∣we compute the partialderivatives to find:J∗=∣∣cosθsinθ0−rsinθrcosθ0001∣∣J∗=(1)∣∣cosθsinθ−rsinθrcosθ∣∣⟹J∗=r(cos2θ+sin2θ)=r
This conclusion leads us to: dVcylindrical=rdrdθdz.
Now, for the spherical coordinates, we have
x=ρsinϕcosθy=ρsinϕsinθz=ρcosϕ
and the volume differential (for the new change of variables (x,y,z)→(ρ,ϕ,θ)) is defined as
dVspherical=Jdρdϕdθ,where J is the jacobian:J=absolute value of det∣∣xρyρzρxϕyϕzϕxθyθzθ∣∣we compute the partialderivatives to find:J=∣∣sinϕcosθsinϕsinθcosϕρcosϕcosθρcosϕsinθ−ρsinϕ−ρsinϕsinθρsinϕcosθ0∣∣⟹J=cosϕ∣∣ρcosϕcosθρcosϕsinθ−ρsinϕsinθρsinϕcosθ∣∣+ρsinϕ∣∣sinϕcosθsinϕsinθ−ρsinϕsinθρsinϕcosθ∣∣
Then we continue to reduce and solve the determinants to find J:
J=cosϕ(ρ2sinϕcosϕcos2θ+ρ2sinϕcosϕsin2θ)+......+(ρsinθ)(ρsin2ϕcos2θ+ρsin2ϕsin2θ)once we reduce and use trigonometric identities, we find J=ρ2sinϕ
Thus we finally have: dVspherical=ρ2sinθdρdϕdθ
Reference:
Department of Mathematics. (1996). Triple Integrals in Cylindrical and Spherical Coordinates. Triple integrals in cylindrical and spherical coordinates. Retrieved October 3, 2021, from http://sites.science.oregonstate.edu/math/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/255cs/255cs.html
Comments