Consider three point charges at the corners of a triangle, as shown in the figure, where q1 = 8.00 x10^-9C, q2 = −4.00 × 10^−9 C, and q3 = 6.00 × 10^−9 C. Find the magnitude and direction of the resultant force on q3
"F_{23} = \\frac{kq_2q_3}{4^2} = \\frac{9 \\times 10^9 \\times 4 \\times 6 \\times 10^{-18}}{16} \\\\\n\nF_{23} = -13.5 \\times 10^{-9} \\;N \\\\\n\nF_{23x}= -13.5 \\times 10^{-9} \\;N \\\\\n\nF_{23y}= 0 \\\\\n\nF_{13} = \\frac{kq_1q_2 }{5^2} = \\frac{9 \\times 10^9 \\times 8 \\times 6 \\times 10^{-18}}{25} \\\\\n\nF_{13} = 17.28 \\times 10^{-9} \\;N \\\\\n\nF_{13x} = F_{13} \\times cos(37) = 17.28 \\times 10^{-9} \\times 0.7986 = 13.799 \\times 10^{-9} \\;N \\\\\n\nF_{13y} = F_{13} \\times sin (37) = 17.28 \\times 10^{-9} \\times 0.6018 = 10.399 \\times 10^{-9} \\;N"
Total force:
"F_x=F_{23x}+F_{13x}=-13.5 \\times 10^{-9} + 13.799 \\times 10^{-9} = 0.299 \\times 10^{-9} \\; N \\\\\n\nF_y=F_{23y}+F_{13y}= 0 + 10.399 \\times 10^{-9} = 10.3399 \\times 10^{-9} \\; N \\\\\n\nMagnitude= \\sqrt{F_x^2+F_y^2}= 1.0344 \\times 10^{-8} \\;N"
angle with +ve x axis "=arctan(\\frac{F_y}{F_x})= 72.07 \\; degrees"
Comments
Leave a comment