Two point particles, one with charge +8.00 nC and the other with charge -2.00 nC, are separated by 4.00 m. The electric field in N/C midway between them is:
The electric field at the middle of a certain distance (d=4 m) can be found as:
"\\overrightarrow{E_c}=\\overrightarrow{E_{1c}}+\\overrightarrow{E_{2c}}=k\\dfrac{q_1}{{r_{1c}}^2}\\,\\widehat{r_{1c}}+k\\dfrac{q_2}{{r_{2c}}^2}\\,\\widehat{r_{2c}}"
Following this we have to set the coordinates for the system so that r1=(0,0)m and r2=(4,0)m are the position vectors for the charges q1= +8 nC and q2= -2 nC and then we find everything related to the center of the distance rc=(d/2,0)=(2,0)m:
"\\overrightarrow{r_{1c}}=\\overrightarrow{r_c}-\\overrightarrow{r_1}=(2,0)m-(0,0)m=(2,0)m\n\\\\ \\overrightarrow{r_{2c}}=\\overrightarrow{r_c}-\\overrightarrow{r_2}=(2,0)m-(4,0)m=(-2,0)m\n\\\\ r_{1c}=r_{2c}=d\/2=2\\,m\n\\\\ \\widehat{r_{1c}}=\\cfrac{\\overrightarrow{r_{1c}}}{r_{1c}}=\\frac{(2,0)}{2}=(1,0)\n\\\\ \\widehat{r_{2c}}=\\cfrac{\\overrightarrow{r_{2c}}}{r_{2c}}=\\frac{(-2,0)}{2}=(-1,0)"
With this information we substitute to find "\\overrightarrow{E_c}":
"\\overrightarrow{E_c}=k\\dfrac{q_1}{{r_{1c}}^2}\\,\\widehat{r_{1c}}+k\\dfrac{q_2}{{r_{2c}}^2}\\,\\widehat{r_{2c}}"
"\\overrightarrow{E_c}=(8.988\\times10^9\\frac{Nm^2}{C^2})\\frac{(8\\times10^{-9}C)}{(2\\,m)^2}(1,0)+(8.988\\times10^9\\frac{Nm^2}{C^2})\\frac{(-2\\times10^{-9}C)}{(2\\,m)^2}(-1,0)"
"\\overrightarrow{E_c}=(17.976)(1,0)\\frac{N}{C}+(-4.494)(-1,0) \\frac{N}{C}=(17.976,0)\\frac{N}{C}+(4.494,0)\\frac{N}{C}"
"\\to \\overrightarrow{E_c}=(22.47,0)\\frac{N}{C} \\implies {E_c}=22.47 \\,\\frac{N}{C}"
In conclusion, the electric field midway between the charges is Ec=22.47 N/C.
Reference:
Comments
Leave a comment