Three charges are fixed to an xy-coordinate system. A charge of
18µC is on y = 3.0m. A charge of −12µC is at the origin. Lastly, a charge of 45µC is on the x-axis at x = 3.0m. Determine the magnitude and direction of the net electrostatic force on the charge at x = 3.0m
First, we have to determine that the net electrostatic force on the charge at x = 3.0m (with q3=+45 µC) will be "\\overrightarrow{F_{elec}}=\\overrightarrow{F_{13}}+\\overrightarrow{F_{23}}"
For this problem, we define q1=+18 µC and q2=-12 µC as the charges and the distance vectors can be found with the position of all charges on the xy plane as:
"\\overrightarrow{r_{13}}=\\overrightarrow{r_3}-\\overrightarrow{r_1}=(3,0)-(0,3)=(3,-3)"
"r_{13}=\\|\\overrightarrow{r_{13}}\\|=\\|(3,-3)\\|=\\sqrt{(3)^2+(-3)^2}=3\\sqrt{2}\\,m"
"\\widehat{r_{13}}=\\frac{\\overrightarrow{r_{13}}}{r_{13}}=\\frac{(3,-3)}{3\\sqrt{2}}=(\\frac{1}{\\sqrt{2}},-\\frac{1}{\\sqrt{2}})"
"\\overrightarrow{r_{23}}=\\overrightarrow{r_3}-\\overrightarrow{r_2}=(3,0)-(0,0)=(3,0)"
"r_{23}=\\|\\overrightarrow{r_{23}}\\|=\\|(3,0)\\|=\\sqrt{(3)^2+(0)^2}=3\\,m"
"\\widehat{r_{23}}=\\frac{\\overrightarrow{r_{23}}}{r_{23}}=\\frac{(3,0)}{3}=(1,0)"
This defines the forces exerted by each particle on q3 as:
"\\overrightarrow{F_{13}}=k\\dfrac{q_1q_3}{{r_{13}}^2}\\,\\widehat{{r_{13}}}"
"\\overrightarrow{F_{13}}=(8.988\\times10^9\\frac{Nm^2}{C^2})\\frac{(18\\times10^{-6}C)(45\\times10^{-6}C)}{(3\\sqrt{2}\\,m)^2}(\\frac{1}{\\sqrt{2}},-\\frac{1}{\\sqrt{2}})"
"\\overrightarrow{F_{13}}=(0.40446\\,N)(\\frac{1}{\\sqrt{2}},-\\frac{1}{\\sqrt{2}})\\approxeq(0.2860,-0.2860)N"
"\\overrightarrow{F_{23}}=k\\dfrac{q_2q_3}{{r_{23}}^2}\\,\\widehat{{r_{23}}}"
"\\overrightarrow{F_{23}}=(8.988\\times10^9\\frac{Nm^2}{C^2})\\frac{(45\\times10^{-6}C)(-12\\times10^{-6}C)}{(3\\,m)^2}(1,0)"
"\\overrightarrow{F_{23}}=(-0.53928\\,N)(1,0)\\approxeq(-0.53928,0)N"
Then the total force will be the sum:
"\\overrightarrow{F_{elec}}=\\overrightarrow{F_{13}}+\\overrightarrow{F_{23}} \\approxeq (0.2860,-0.2860)N+(-0.53928,0)N"
"\\overrightarrow{F_{elec}}=\\overrightarrow{F_{1\/3}}+\\overrightarrow{F_{2\/3}} \\approxeq (-0.25328,-0.2860)N"
Thus the magnitude of this new vector is:
"F_{elec}=\\|\\overrightarrow{F_{elec}}\\| \\approxeq\\|(-0.25328,-0.2860)\\|N\\approxeq[\\sqrt{(-0.25328)^2+(-0.2860)^2}]N"
"F_{elec}=\\|\\overrightarrow{F_{elec}}\\| \\approxeq 0.3820\\,N"
To find the angle or orientation we use a trigonometric function:
"\\tan \\theta =\\frac{y}{x}=\\frac{-0.2860}{-0.25328}=1.1291 \\implies \\theta=\\arctan(1.1291)=48.47\u00b0"
That last means the vector is located at the third quadrant on "\\theta'=228.47\u00b0"
In conclusion, the magnitude of the force on x=3.0 m is F=0.3820 N and the orientation is near to "\\theta'=228.47\u00b0" with respect to the x-axis thus the force vector is located on the third quadrant.
Reference:
Comments
This is so amazing it gives you clear understandable answer. Keep it up with the good work.
Leave a comment