Answer to Question #181411 in Electricity and Magnetism for Satyam

Question #181411
Explain self induction with Its SI units
1
Expert's answer
2021-04-15T20:41:27-0400

Self-inductance or in other words inductance of the coil is defined as the property of the coil due to which it opposes the change of current flowing through it. Inductance is attained by a coil due to the self-induced emf produced in the coil itself by changing the current flowing through it.

If the current in the coil is increasing, the self-induced emf produced in the coil will oppose the rise of current, that means the direction of the induced emf is opposite to the applied voltage.


If the current in the coil is decreasing, the emf induced in the coil is in such a direction as to oppose the fall of current; this means that the direction of the self-induced emf is same as that of the applied voltage. Self-inductance does not prevent the change of current, but it delays the change of current flowing through it.

This property of the coil only opposes the changing current (alternating current) and does not affect the steady current that is (direct current) when flows through it. The unit of inductance is Henry (H).

"\\varepsilon=-L\\frac{dI}{dt},"

the above expression is used when the magnitude of self-induced emf (e) in the coil and the rate of change of current (dI/dt) is known.

Putting the following values in the above equations as e = 1 V, and dI/dt = 1 A/s then the value of Inductance will be L = 1 H.

Hence, from the above derivation, a statement can be given that a coil is said to have an inductance of 1 Henry if an emf of 1 volt is induced in it when the current flowing through it changes at the rate of 1 Ampere/second.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog