What is the capacitance and self-inductance per length of a cable that consists of a solid inner conductor (radius R1) and a thin coaxial conducting cylindrical shell (inner radius R2). The region between the conductors is filled with a uniformly distributed dielectric (dielectric constant Kappa). Mu=Mu0
Capacitance
Assume an imaginary Gaussian cylinder of radius r where "R_2 \\eqslantless r\\eqslantless R_1"
By Gauss law "\\int \\vec{E}.\\vec{d}a= \\frac{Q}{\\epsilon} \\implies |\\vec{E}|. 2 \\pi rh =\\frac{Q}{\\epsilon} \\implies |\\vec{E}|= \\frac{Q}{\\epsilon 2 \\pi rh}"
Voltage difference integral of electric field , "V=\\int _{R_2} ^{R_1} \\vec{E}dr= \\frac{Q}{\\epsilon 2 \\pi rh} \\int _{R_2} ^{R_1} \\frac{1}{r}dr = \\frac{Q}{\\epsilon 2 \\pi h} \\ln(\\frac{R_1}{R_2})"
We know Q=CV
"Q=\\frac{CQ}{\\epsilon 2 \\pi h} \\ln(\\frac{R_1}{R_2}) \\implies \\frac{C}{h}=\\frac{\\epsilon 2 \\pi}{h} \\ln(\\frac{R_1}{R_2})" h represents the length
Inductance
Using Ampere's law and imaginary circular path of radius r
"\\oint \\vec{B}.\\vec{d}l= \\mu I \\implies \\vec{B}. 2 \\pi r = \\mu I \\implies \\vec{B}= \\frac{ \\mu I }{ 2 \\pi r}"
If you consider a flux on the surface
"\\phi=\\int _{R_2} ^{R_1} \\frac{\\mu I}{2 \\pi}hdr= \\frac{\\mu I h}{2 \\pi} \\int _{R_2} ^{R_1} \\frac{1}{r}dr = \\frac{\\mu I h}{2 \\pi} \\ln(\\frac{R_1}{R_2})"
We know "V_{drop}= \\frac{d \\phi}{dt}=L\\frac{dI}{dt} =\\frac{\\mu h}{2 \\pi} \\ln(\\frac{R_1}{R_2})\\frac{d I}{dt}"
"\\frac{L}{h}=\\frac{\\mu}{2 \\pi} \\ln(\\frac{R_1}{R_2})\\frac{d I}{dt}" h represents the length
Comments
Leave a comment