Consider a hollow charged shell of inner radius a and outer radius b . The volume
charge density is ρ(r) = k
r
2
( k is constant) in the region a < r < b. The magnitude
of the electric field produced at distance r > a is ?
Given,
Radius of the inner spherical shell = a
Radius of the outer spherical shell = b
Volume charge density "(\\rho)=kr^2"
"a<r<b"
Electric field at a distance "a<r" ?
"dQ= \\rho 4\\pi r^2 dr"
Electric field at a distance r, from the center of the spherical shell,
"dE(r)=\\frac{1}{4\\pi \\epsilon_o}\\frac{dQ}{r^2}"
Now, taking the integration of both side,
"\\int_0^E dE(r)=\\int_a^r\\frac{1}{4\\pi \\epsilon_o}\\frac{dQ}{r^2}"
Now, substituting the values,
"E(r) =\\frac{1}{4\\pi \\epsilon_o}\\int_a^r\\frac{\\rho \\times 4\\pi r^2}{r^2}dr"
"\\Rightarrow E(r) =\\frac{1}{4\\pi \\epsilon_o}\\int_a^r\\frac{kr^2 \\times 4\\pi r^2}{r^2}dr"
"\\Rightarrow E(r)=\\frac{4\\pi\\times k}{4\\pi \\epsilon_o}\\int_a^r(r^2)dr"
"\\Rightarrow E(r) = \\frac{k}{\\epsilon_o}(\\frac{r^3}{3})_a^r"
"\\Rightarrow E(r)=\\frac{k}{3\\epsilon_o}(r^3-a^3)"
Comments
Leave a comment