Electric potential at the point P due to the charge -Q on the z axis "V_1=\\frac{-Q}{4\\pi \\epsilon_o (r-\\frac{d\\cos\\theta}{2})}"
Electric potential at the point P due to the charge -Q on the -z axis "V_2=\\frac{-Q}{4\\pi \\epsilon_o (r+\\frac{d\\cos\\theta}{2})}"
Electric potential at the point P due to the charge 2Q, "V_3=\\frac{2Q}{4\\pi \\epsilon_o r}"
Hence, net electric potential at the point P,
"V=V_1+V_2+V_3 =\\frac{-Q}{4\\pi \\epsilon_o (r-\\frac{d\\cos\\theta}{2})}+\\frac{-Q}{4\\pi \\epsilon_o (r+\\frac{d\\cos\\theta}{2})}+\\frac{2Q}{4\\pi \\epsilon_o r}"
"=\\frac{2Q}{4\\pi \\epsilon_o r}-\\frac{2Qr}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})}"
Hence, electric field intensity at the point P,
"E=\\hat{r}\\frac{\\partial}{\\partial r}[\\frac{-Q}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})}]-\\hat{\\theta}\\frac{1}{r}\\frac{\\partial}{\\partial \\theta}[\\frac{-Q}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})}]-\\hat{r}\\dfrac{\\partial}{\\partial r}[\\frac{2Q}{4\\pi \\epsilon r^2}]"
"E=\\hat{r}[\\frac{-Q(r^2+\\frac{d^2\\cos\\theta}{4})}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})} +\\frac{2Q}{4\\pi \\epsilon r^2}]-[\\frac{-2Qd^2\\times 2\\sin\\theta.\\cos\\theta}{4\\pi \\epsilon_o \\times 4(r^2-\\frac{d^2\\cos\\theta}{4})}]\\hat{ \\theta}"
Comments
Leave a comment