Answer to Question #151449 in Electricity and Magnetism for Vijay Kumar

Question #151449
Consider three charges, one of magnitude +2Q and other two have magnitude -Q. They are
placed in a constellation as depicted in the figure below. Find out the electric intensity at some
spherical point P(r, theta,
1
Expert's answer
2020-12-17T07:26:43-0500

Electric potential at the point P due to the charge -Q on the z axis "V_1=\\frac{-Q}{4\\pi \\epsilon_o (r-\\frac{d\\cos\\theta}{2})}"


Electric potential at the point P due to the charge -Q on the -z axis "V_2=\\frac{-Q}{4\\pi \\epsilon_o (r+\\frac{d\\cos\\theta}{2})}"

Electric potential at the point P due to the charge 2Q, "V_3=\\frac{2Q}{4\\pi \\epsilon_o r}"

Hence, net electric potential at the point P,

"V=V_1+V_2+V_3 =\\frac{-Q}{4\\pi \\epsilon_o (r-\\frac{d\\cos\\theta}{2})}+\\frac{-Q}{4\\pi \\epsilon_o (r+\\frac{d\\cos\\theta}{2})}+\\frac{2Q}{4\\pi \\epsilon_o r}"


"=\\frac{2Q}{4\\pi \\epsilon_o r}-\\frac{2Qr}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})}"


Hence, electric field intensity at the point P,

"E=\\hat{r}\\frac{\\partial}{\\partial r}[\\frac{-Q}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})}]-\\hat{\\theta}\\frac{1}{r}\\frac{\\partial}{\\partial \\theta}[\\frac{-Q}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})}]-\\hat{r}\\dfrac{\\partial}{\\partial r}[\\frac{2Q}{4\\pi \\epsilon r^2}]"


"E=\\hat{r}[\\frac{-Q(r^2+\\frac{d^2\\cos\\theta}{4})}{4\\pi \\epsilon_o (r^2-\\frac{d^2\\cos\\theta}{4})} +\\frac{2Q}{4\\pi \\epsilon r^2}]-[\\frac{-2Qd^2\\times 2\\sin\\theta.\\cos\\theta}{4\\pi \\epsilon_o \\times 4(r^2-\\frac{d^2\\cos\\theta}{4})}]\\hat{ \\theta}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog