Show that the function f defined by f(x)= 1/x^2 is uniformly continuous on [a, ∞] , a> 0
For a function "f: A \\rightarrow B" to be uniformly continuous we need that
"\\forall \\varepsilon>0 \\exists \\delta>0 \\forall x, y \\in A:|x-y|<\\delta \\Rightarrow|f(x)-f(y)|<\\varepsilon"
We have in your case "f(x)=\\frac{1}{x^{2}}."
We have "\\forall x, y \\in[1, \\infty)"
"|f(x)-f(y)|=\\left|\\frac{1}{x^{2}}-\\frac{1}{y^{2}}\\right|=\\left|\\frac{y^{2}-x^{2}}{x^{2} y^{2}}\\right|=\\frac{1}{x^{2} y^{2}}\\left|y^{2}-x^{2}\\right|=\\frac{1}{x^{2} y^{2}}|y+x||y-x|"
Now, since "y+x>0" and "|y-x|=|x-y|" we get
"\\frac{1}{x^{2} y^{2}}|y+x \\| y-x|=\\frac{x+y}{x^{2} y^{2}}|x-y|=\\left(\\frac{1}{x y^{2}}+\\frac{1}{x^{2} y}\\right)|x-y|<|x-y|"
since "\\frac{1}{x y^{2}}<\\frac{1}{2}" and "\\frac{1}{x^{2} y}<\\frac{1}{2}\\ \\text{for}\\ x, y \\in[1, \\infty)."
Therefore if you set "\\delta=\\varepsilon" we get
"|f(x)-f(y)|<|x-y|<\\delta=\\varepsilon"
Comments
Leave a comment