Give an example of an infinite set with finite number of limit points, with proper justification.
"\\text{The set}\\\\\n\\Big\\{\\frac{1}{n} \\mid n \\in \\mathbb{Z}^+\\Big\\} \\bigcup \\\\ \\Big\\{1+ \\frac{1}{n} \\mid n \\in \\mathbb{Z}^+\\Big\\} \\\\ \n\\text{ is an infinite set which has a finite limit point} \\\\\n\\text{By the definition of limit, we can write}\\\\\n\\Big\\{\\frac{1}{n} \\mid n \\in \\mathbb{Z}^+\\Big\\} \\\\ \\text{as}\\\\\n\\lim_{n \\to \\infty} \\frac{1}{n} = 0 \\\\\n\\text{while for}\\\\\n\\Big\\{1+ \\frac{1}{n} \\mid n \\in \\mathbb{Z}^+\\Big\\}\\\\\n\\text{write as}\\\\\n\\lim_{n \\to \\infty} (1 + \\frac{1}{n}) = 1 \\\\\n\\text{Hence,}\\\\\n\\Big\\{\\frac{1}{n} \\mid n \\in \\mathbb{Z}^+\\Big\\} \\bigcup \\\\ \\Big\\{1+ \\frac{1}{n} \\mid n \\in \\mathbb{Z}^+\\Big\\} = \\{0,1\\} \\, \\text{which is finite.}"
Comments
Leave a comment