If S := {1/n - 1/m: n, mEN}, find inf S and sup S
"\\text{Consider $n=1,2,\\cdots,$ we get sequences \\{1-$\\frac{1}{m}$\\}, $\\{\\frac{1}{2}$-$\\frac{1}{n}$\\}},\\cdots. \\text{We see that 1 is an upper}\\\\ \\text{bound and claim that} \\sup(S)=1. \\text{ Now for any p$<1$, we have $\\epsilon=1-p>0$. It is known}\\\\ \\text{from the Archimedian property that there exists $m\\in \\mathbb{N} \\ni \\frac{1}{m}<1-p$, or equivalently,}\\\\ p<1-\\frac{1}{m}. \\text{therefore, any $p<1$ is not an upper bound of S.}\\\\ \\text{Thus, this shows that $\\sup(S)=1.$}\\\\ \\text{Also, considering $m=1,2,\\cdots,$we get sequences $,\\{\\frac{1}{n}-1\\},\\{\\frac{1}{n}-\\frac{1}{2}\\},\\cdots.$ It is clear that -1} \\\\ \\text{is a lower bound of S since, for any $-1<q$, we get $q+1>0$ and thus there exists a}\\\\ \\text{positive integer n$\\in \\mathbb{N} \\ni \\frac{1}{n}<q+1.$ It follows that we get $\\frac{1}{n}-1\\in S \\ni \\frac{1}{n}-1<q.$}\\\\ \\text{Thus, this shows that $\\inf(S)=-1.$}"
Comments
Leave a comment