Answer to Question #287829 in Real Analysis for craciena

Question #287829

 If S := {1/n - 1/m: n, mEN}, find inf S and sup S


1
Expert's answer
2022-01-18T10:40:22-0500

Consider n=1,2,, we get sequences {1-1m}, {12-1n},.We see that 1 is an upperbound and claim thatsup(S)=1. Now for any p<1, we have ϵ=1p>0. It is knownfrom the Archimedian property that there exists mN1m<1p, or equivalently,p<11m.therefore, any p<1 is not an upper bound of S.Thus, this shows that sup(S)=1.Also, considering m=1,2,,we get sequences ,{1n1},{1n12},. It is clear that -1is a lower bound of S since, for any 1<q, we get q+1>0 and thus there exists apositive integer nN1n<q+1. It follows that we get 1n1S1n1<q.Thus, this shows that inf(S)=1.\text{Consider $n=1,2,\cdots,$ we get sequences \{1-$\frac{1}{m}$\}, $\{\frac{1}{2}$-$\frac{1}{n}$\}},\cdots. \text{We see that 1 is an upper}\\ \text{bound and claim that} \sup(S)=1. \text{ Now for any p$<1$, we have $\epsilon=1-p>0$. It is known}\\ \text{from the Archimedian property that there exists $m\in \mathbb{N} \ni \frac{1}{m}<1-p$, or equivalently,}\\ p<1-\frac{1}{m}. \text{therefore, any $p<1$ is not an upper bound of S.}\\ \text{Thus, this shows that $\sup(S)=1.$}\\ \text{Also, considering $m=1,2,\cdots,$we get sequences $,\{\frac{1}{n}-1\},\{\frac{1}{n}-\frac{1}{2}\},\cdots.$ It is clear that -1} \\ \text{is a lower bound of S since, for any $-1<q$, we get $q+1>0$ and thus there exists a}\\ \text{positive integer n$\in \mathbb{N} \ni \frac{1}{n}<q+1.$ It follows that we get $\frac{1}{n}-1\in S \ni \frac{1}{n}-1<q.$}\\ \text{Thus, this shows that $\inf(S)=-1.$}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment