prove that the function f given by
f(x)={ 2,if x is irrational
-2,if x is rational
is discontinuous, for all x€R,using the sequential definition of continuity
ANSWER.
By the definition of continuity from condition "\\lim _{ n\\rightarrow \\infty }{ { x }_{ n } } =a" it follows "\\lim _{ n\\rightarrow \\infty }{ { f(x }_{ n })=f(a) } \\\\ \\\\" . Therefore , if "\\lim _{ n\\rightarrow \\infty }{ { x }_{ n } } =\\lim _{ n\\rightarrow \\infty }{ { y }_{ n } } =a" then "\\lim _{ n\\rightarrow \\infty }{ { f(x }_{ n })=\\lim _{ n\\rightarrow \\infty }{ { f(\\ y }_{ n })\\ \\ } }"
Let "a" be a real number and "n" be a natural number. Between the numbers "a-1\/n , a+1\/n" we choose a rational number "x_n" and irrational number "y_n" . Since "a-\\frac { 1 }{ n } <{ x }_{ n }<a+\\frac { 1 }{ n } \\quad ,a-\\frac { 1 }{ n } <{ y }_{ n }<a+\\frac { 1 }{ n }" , and "\\lim _{ n\\rightarrow \\infty }{ \\left( a-\\frac { 1 }{ n } \\right) = } \\lim _{ n\\rightarrow \\infty }{ \\left( a+\\frac { 1 }{ n } \\right) =a }", then "\\lim _{ n\\rightarrow \\infty }{ { x }_{ n }= } \\lim _{ n\\rightarrow \\infty }{ { y }_{ n }=a }" . For sequences "\\left( { x }_{ n } \\right) \\ in\\ Q,\\ \\left( { y }_{ n } \\right) \\ in\\ R\\setminus Q" we have "f\\left( { x }_{ n } \\right) =-2,\\ f\\left( { y }_{ n } \\right) = 2" for all "n\\in N" . So
"\\lim _{ n\\rightarrow \\infty }{ { f(x }_{ n })=-2\\neq } 2=\\ \\lim _{ n\\rightarrow \\infty }{ { f(\\ y }_{ n })\\ \\ } ."
Hence, "f" is not continuous at "a" , and as "a" was arbitrary , that "f" is not continuous at any "a\\in R."
Comments
Leave a comment