1.
"a_n=\\dfrac{2}{\\pi}\\displaystyle\\int_{0}^{\\pi}x^2\\cos(nx)dx"
"\\int x^2\\cos(nx)dx=\\dfrac{1}{n}x^2\\sin(nx)-\\dfrac{2}{n}\\int x\\sin(nx)dx"
"=\\dfrac{1}{n}x^2\\sin(nx)+\\dfrac{2}{n^2}x\\cos(nx)-\\dfrac{2}{n^2}\\int \\cos(nx)dx"
"=\\dfrac{1}{n}x^2\\sin(nx)+\\dfrac{2}{n^2}x\\cos(nx)-\\dfrac{2}{n^3}\\sin(nx)+C"
"a_n=\\dfrac{2}{\\pi}[\\dfrac{x^2}{n}\\sin(nx)+\\dfrac{2x}{n^2}\\cos(nx)-\\dfrac{2}{n^3}\\sin(nx)]\\begin{matrix}\n \\pi \\\\\n 0\n\\end{matrix}"
"=\\dfrac{4}{n^2}\\cos(n\\pi)=\\dfrac{4(-1)^n}{n^2}"
Therefore, we have
2.
"a_n=\\dfrac{1}{\\pi}\\displaystyle\\int_{0}^{2\\pi}x^2\\cos(nx)dx"
"\\int x^2\\cos(nx)dx=\\dfrac{1}{n}x^2\\sin(nx)-\\dfrac{2}{n}\\int x\\sin(nx)dx"
"=\\dfrac{1}{n}x^2\\sin(nx)+\\dfrac{2}{n^2}x\\cos(nx)-\\dfrac{2}{n^2}\\int \\cos(nx)dx"
"=\\dfrac{1}{n}x^2\\sin(nx)+\\dfrac{2}{n^2}x\\cos(nx)-\\dfrac{2}{n^3}\\sin(nx)+C"
"a_n=\\dfrac{1}{\\pi}[\\dfrac{x^2}{n}\\sin(nx)+\\dfrac{2x}{n^2}\\cos(nx)-\\dfrac{2}{n^3}\\sin(nx)]\\begin{matrix}\n 2\\pi \\\\\n 0\n\\end{matrix}"
"=\\dfrac{4}{n^2}"
Therefore, we have
Comments
Leave a comment