Find the limit superior and the limit inferior of the following sequences
a) {(1 +
1
π
)
π+1
}
b) {
(β1)
π
π2
}
Assume the sequences are as follows:
(a) "\\{a_n\\}=\\{\\frac{1}{n}+(-1)^n\\}""|a_n|=|\\frac{1}{n}+(-1)^n|\\leq2" for all integers "n\\geq1". Hence "\\{a_n\\}" is bounded.
The first few terms are "\\{0,\\frac{3}{2},\\frac{-2}{3},\\frac{5}{4},\\frac{-4}{5},\\frac{7}{6},\\cdots\\}". The subsequence "\\{a_{2n}\\}=\\{\\frac{3}{2},\\frac{5}{4},\\frac{7}{6},\\cdots\\}" converges to 1 and the subsequence "\\{a_{2n-1}\\}=\\{0,\\frac{-2}{3},\\frac{-4}{3},\\cdots\\}" converges to -1. Hence "S=\\{-1,1\\}"
"\\liminf a_n=\\inf(S)=-1\\\\\n\\limsup a_n=\\sup(S)=1"
(b)
"x_{n}=(-1)^{n} \\frac{1+n}{n}"
Since "\\frac{1+n}{n}=1+\\frac{1}{n} \\geq 0" for any "n \\in \\mathbb{N}" we have
"\\lim _{n \\rightarrow \\infty} \\sup x_{n}=\\lim _{k \\rightarrow \\infty} x_{2 k}=1"
"\\limsup _{n \\rightarrow \\infty} x_{n}=\\lim _{k \\rightarrow \\infty} x_{2 k}=1"
and
"\\liminf _{n \\rightarrow \\infty} x_{n}=\\lim _{k \\rightarrow \\infty} x_{2 k+1}=-1"
Comments
Leave a comment