We should prove that for even function h
∫ − β β h ( t ) d t = 2 ∫ 0 β h ( t ) d t . \int\limits_{-\beta}^{\beta} h(t)\,dt= 2\int \limits_{0}^{\beta} h(t)\,dt. − β ∫ β h ( t ) d t = 2 0 ∫ β h ( t ) d t .
We know that h(-x)=h(x).
Let us divide the integral into two parts:
∫ − β β h ( t ) d t = ∫ − β 0 h ( t ) d t + ∫ 0 β h ( t ) d t \int\limits_{-\beta}^{\beta} h(t)\,dt= \int\limits_{-\beta}^{0} h(t)\,dt + \int\limits_{0}^{\beta} h(t)\,dt − β ∫ β h ( t ) d t = − β ∫ 0 h ( t ) d t + 0 ∫ β h ( t ) d t .
We may see that the first integral may be transformed
∫ − β 0 h ( t ) d t = ∣ x = − t ∣ = − ∫ β 0 h ( − x ) d x = − ∫ β 0 h ( x ) d x \int\limits_{-\beta}^{0} h(t)\,dt = \Big| x = -t \Big| = -\int\limits_{\beta}^{0} h(-x)\,dx = -\int\limits_{\beta}^{0} h(x)\,dx − β ∫ 0 h ( t ) d t = ∣ ∣ x = − t ∣ ∣ = − β ∫ 0 h ( − x ) d x = − β ∫ 0 h ( x ) d x because h(-x)=h(x).
And − ∫ β 0 h ( x ) d x = ∫ 0 β h ( x ) d x -\int\limits_{\beta}^{0} h(x)\,dx = \int\limits_{0}^{\beta} h(x)\,dx − β ∫ 0 h ( x ) d x = 0 ∫ β h ( x ) d x .
Therefore, ∫ − β β h ( t ) d t = ∫ 0 β h ( x ) d x + ∫ 0 β h ( t ) d t = 2 ∫ 0 β h ( t ) d t \int\limits_{-\beta}^{\beta} h(t)\,dt= \int\limits_{0}^{\beta} h(x)\,dx + \int\limits_{0}^{\beta} h(t)\,dt = 2\int\limits_{0}^{\beta} h(t)\,dt − β ∫ β h ( t ) d t = 0 ∫ β h ( x ) d x + 0 ∫ β h ( t ) d t = 2 0 ∫ β h ( t ) d t .
Comments