The limit: limit x→0^+ (xcosecx)^x does not exist
True or false with full explanation
Let us show that the limit "\\lim\\limits_{ x\\to 0^+} (x\\cosec x)^x" exists.
Since "\\lim\\limits_{ x\\to 0} \\frac{\\sin x}{x}=1," we conclude that
"\\lim\\limits_{ x\\to 0^+} (x\\cosec x)^x=\\lim\\limits_{ x\\to 0^+} (\\frac{x}{\\sin x})^x=\n\\lim\\limits_{ x\\to 0^+} (\\frac{\\sin x}{ x})^{-x}=1^0=1"
Answer: false
Comments
Leave a comment