Letan={(−1)n}n=1∞={−1,1,−1,1,−1,1,…}Letan1andan2be subsequences ofanLetan1={−1,−1,−1,…}an1converges to−1Letan2={1,1,1,…}an2converges to1Proof thatandivergesAssume thatanconverges toa∗for anyϵ>0.∣an−a∗∣<ϵLetϵ=21∣(−1)n−a∗∣<21∣(−1)n+1−(−1)n+2∣=2∣(−1)n+1−a∗+a∗−(−1)n+2∣=22=∣(−1)n+1−a∗+a∗−(−1)n+2∣≤∣(−1)n+1−a∗∣+∣a∗−(−1)n+2∣≤∣(−1)n+1−a∗∣+∣(−1)n+2−a∗∣<21+21=1This implies that2<1,which is false.Hence the sequence is divergent.
Comments