Give an example of a divergent sequence which has two convergent sequences. Justify your claim
"\\displaystyle\n\\textsf{Let}\\,\\, a_n = \\{(-1)^n\\}_{n = 1}^{\\infty} = \\{-1, 1, -1, 1, -1, 1,\\ldots\\} \\\\\n\n\\textsf{Let}\\,\\, a_{n1}\\,\\, \\textsf{and}\\,\\, a_{n2}\\,\\, \\textsf{be subsequences of}\\,\\, a_n \\\\\n\n\\textsf{Let}\\,\\,\\, a_{n1} = \\{-1,-1,-1,\\ldots\\} \\\\\n\na_{n1} \\,\\,\\, \\textsf{converges to}\\,\\, -1 \\\\\n\n\\textsf{Let}\\,\\,\\, a_{n2} = \\{1,1,1,\\ldots\\} \\\\\n\na_{n2} \\,\\,\\, \\textsf{converges to}\\,\\, 1 \\\\\n\\textbf{Proof that}\\,\\,\\textbf{a}_n \\,\\, \\textbf{diverges} \\\\\n\n\\textsf{Assume that}\\,\\, a_n\\,\\, \\textsf{converges to}\\,\\, a^*\\,\\, \\textsf{for any}\\,\\, \\epsilon > 0.\\\\\n\n|a_n - a^*| < \\epsilon\\\\\n\n\\textsf{Let}\\,\\, \\epsilon = \\frac{1}{2} \\\\\n|(-1)^n - a^*| < \\frac{1}{2}\\\\\n\n|(-1)^{n + 1} - (-1)^{n + 2}| = 2 \\\\\n\n|(-1)^{n + 1} - a^* + a^* - (-1)^{n + 2}| = 2 \\\\\n\n\\begin{aligned}\n2 &= |(-1)^{n + 1} - a^* + a^* - (-1)^{n + 2}| \n\\\\&\\leq |(-1)^{n + 1} - a^*| + |a^* - (-1)^{n + 2}| \\\\\n&\\leq |(-1)^{n + 1} - a^*| + |(-1)^{n + 2} - a^*| < \\frac{1}{2} + \\frac{1}{2} = 1 \n\\end{aligned}\\\\\n\n\\textsf{This implies that}\\,\\, 2 <1, \\,\\, \\textsf{which is false}.\\\\\n\n\\textsf{Hence the sequence is divergent.}"
Comments
Leave a comment