Question #176989

Give an example of a divergent sequence which has two convergent sequences. Justify  your claim


1
Expert's answer
2021-04-14T13:17:24-0400

Letan={(1)n}n=1={1,1,1,1,1,1,}Letan1andan2be subsequences ofanLetan1={1,1,1,}an1converges to1Letan2={1,1,1,}an2converges to1Proof thatandivergesAssume thatanconverges toafor anyϵ>0.ana<ϵLetϵ=12(1)na<12(1)n+1(1)n+2=2(1)n+1a+a(1)n+2=22=(1)n+1a+a(1)n+2(1)n+1a+a(1)n+2(1)n+1a+(1)n+2a<12+12=1This implies that2<1,which is false.Hence the sequence is divergent.\displaystyle \textsf{Let}\,\, a_n = \{(-1)^n\}_{n = 1}^{\infty} = \{-1, 1, -1, 1, -1, 1,\ldots\} \\ \textsf{Let}\,\, a_{n1}\,\, \textsf{and}\,\, a_{n2}\,\, \textsf{be subsequences of}\,\, a_n \\ \textsf{Let}\,\,\, a_{n1} = \{-1,-1,-1,\ldots\} \\ a_{n1} \,\,\, \textsf{converges to}\,\, -1 \\ \textsf{Let}\,\,\, a_{n2} = \{1,1,1,\ldots\} \\ a_{n2} \,\,\, \textsf{converges to}\,\, 1 \\ \textbf{Proof that}\,\,\textbf{a}_n \,\, \textbf{diverges} \\ \textsf{Assume that}\,\, a_n\,\, \textsf{converges to}\,\, a^*\,\, \textsf{for any}\,\, \epsilon > 0.\\ |a_n - a^*| < \epsilon\\ \textsf{Let}\,\, \epsilon = \frac{1}{2} \\ |(-1)^n - a^*| < \frac{1}{2}\\ |(-1)^{n + 1} - (-1)^{n + 2}| = 2 \\ |(-1)^{n + 1} - a^* + a^* - (-1)^{n + 2}| = 2 \\ \begin{aligned} 2 &= |(-1)^{n + 1} - a^* + a^* - (-1)^{n + 2}| \\&\leq |(-1)^{n + 1} - a^*| + |a^* - (-1)^{n + 2}| \\ &\leq |(-1)^{n + 1} - a^*| + |(-1)^{n + 2} - a^*| < \frac{1}{2} + \frac{1}{2} = 1 \end{aligned}\\ \textsf{This implies that}\,\, 2 <1, \,\, \textsf{which is false}.\\ \textsf{Hence the sequence is divergent.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS