State and prove the weierstrass M -test for the uniform convergence of a series of functions
Statement: A series "\\sum^{\\infin}_1U_n(x)" of functions will converge uniformly on I. If there exist a convergent series "\\sum^{\\infin}_1M_n" of positive constant such that "|U_n(x)|\\eqslantless M_n \\forall n \\in N and \\space \\forall \\in I"
Proof: "\\sum M_n" is convergent
By Cauchy's principle for given "\\in >0 \\& m \\in N" such that "M_{n+1}+M_{n+2}+.....+M_{n+p} < \\in ..........1"
"\\forall n \\eqslantgtr m; p=1,2,3"
Our hypothesis "|U_n(x)|\\eqslantless M_n \\forall n \\in N and \\space \\forall \\in I"
Now "|U_{n+1}(x)+U_{n+2}(x)+...+U_{n+p}(x)| \\eqslantless |U_{n+1}(x)|+|U_{n+2}(x)|+...+|U_{n+p}(x)| \\eqslantless M_{n+1}+M_{n+2}....+M_{n+p} < \\in \\forall n \\eqslantgtr m , p=1,2..."
"|U_{n+1}(x)+U_{n+2}(x)+...+U_{n+p}(x)| < \\in \\forall n < m , p=1,2..."
Therefore "U_n(x)" convergent uniformly and absolutely on I
Comments
Leave a comment