Question #170533

State and prove the weierstrass M -test for the uniform convergence of a series of functions


1
Expert's answer
2021-03-25T13:19:33-0400

Statement: A series 1Un(x)\sum^{\infin}_1U_n(x) of functions will converge uniformly on I. If there exist a convergent series 1Mn\sum^{\infin}_1M_n of positive constant such that Un(x)MnnNand I|U_n(x)|\eqslantless M_n \forall n \in N and \space \forall \in I


Proof: Mn\sum M_n is convergent

By Cauchy's principle for given >0&mN\in >0 \& m \in N such that Mn+1+Mn+2+.....+Mn+p<..........1M_{n+1}+M_{n+2}+.....+M_{n+p} < \in ..........1

nm;p=1,2,3\forall n \eqslantgtr m; p=1,2,3

Our hypothesis Un(x)MnnNand I|U_n(x)|\eqslantless M_n \forall n \in N and \space \forall \in I

Now Un+1(x)+Un+2(x)+...+Un+p(x)Un+1(x)+Un+2(x)+...+Un+p(x)Mn+1+Mn+2....+Mn+p<nm,p=1,2...|U_{n+1}(x)+U_{n+2}(x)+...+U_{n+p}(x)| \eqslantless |U_{n+1}(x)|+|U_{n+2}(x)|+...+|U_{n+p}(x)| \eqslantless M_{n+1}+M_{n+2}....+M_{n+p} < \in \forall n \eqslantgtr m , p=1,2...

Un+1(x)+Un+2(x)+...+Un+p(x)<n<m,p=1,2...|U_{n+1}(x)+U_{n+2}(x)+...+U_{n+p}(x)| < \in \forall n < m , p=1,2...

Therefore Un(x)U_n(x) convergent uniformly and absolutely on I


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS