2x2yyβ²β²+4y2=x2(yβ²)2+2xyyβ²
y=x2z2
then:
y=x2z2
yβ²=2xz2+2x2zzβ²
yβ²β²=2z2+4xzzβ²+4xzzβ²+2x2((zβ²)2+zzβ²β²)
2x2x2z2(2z2+4xzzβ²+4xzzβ²+2x2((zβ²)2+zzβ²β²))+4x4z4=
=x2(2xz2+2x2zzβ²)2+2xx2z2(2xz2+2x2zzβ²)
x2z2(z2+4xzzβ²+x2((zβ²)2+zzβ²β²))+x2z4=
=x2z4+2x3z3zβ²+x4z2(zβ²)2+xz2(xz2+x2zzβ²)
z2+4xzzβ²+x2((zβ²)2+zzβ²β²)+z2=z2+2xzzβ²+x2(zβ²)2+z2+xzzβ²
xzzβ²+x2zzβ²β²=0
xz(zβ²+xzβ²β²)=0
zβ²+xzβ²β²=0
zβ²=u
u+xuβ²=0
du/u=βdx/x
lnu=βlnx+lnc1β
u=c1β/x
dz=c1βdx/x
z=c1βlnx+c2β
y(x)=x2(c1βlnx+c2β)2
Comments