solve the following differential equation: 2x^2y(d^2y/dx^2)+4y^2=x^2(dy/dx)^2+2xy(dy/dx)
"2x^2yy''+4y^2=x^2(y')^2+2xyy'"
"y=x^2z^2"
then:
"y=x^2z^2"
"y'=2xz^2+2x^2zz'"
"y''=2z^2+4xzz'+4xzz'+2x^2((z')^2+zz'')"
"2x^2x^2z^2(2z^2+4xzz'+4xzz'+2x^2((z')^2+zz''))+4x^4z^4="
"=x^2(2xz^2+2x^2zz')^2+2xx^2z^2(2xz^2+2x^2zz')"
"x^2z^2(z^2+4xzz'+x^2((z')^2+zz''))+x^2z^4="
"=x^2z^4+2x^3z^3z'+x^4z^2(z')^2+xz^2(xz^2+x^2zz')"
"z^2+4xzz'+x^2((z')^2+zz'')+z^2=z^2+2xzz'+x^2(z')^2+z^2+xzz'"
"xzz'+x^2zz''=0"
"xz(z'+xz'')=0"
"z'+xz''=0"
"z'=u"
"u+xu'=0"
"du\/u=-dx\/x"
"lnu=-lnx+lnc_1"
"u=c_1\/x"
"dz=c_1dx\/x"
"z=c_1lnx+c_2"
"y(x)=x^2(c_1lnx+c_2)^2"
Comments
Leave a comment