Question #283606

solve the following differential equation: 2x^2y(d^2y/dx^2)+4y^2=x^2(dy/dx)^2+2xy(dy/dx)

1
Expert's answer
2021-12-31T11:34:33-0500

2x2yyβ€²β€²+4y2=x2(yβ€²)2+2xyyβ€²2x^2yy''+4y^2=x^2(y')^2+2xyy'


y=x2z2y=x^2z^2

then:

y=x2z2y=x^2z^2

yβ€²=2xz2+2x2zzβ€²y'=2xz^2+2x^2zz'

yβ€²β€²=2z2+4xzzβ€²+4xzzβ€²+2x2((zβ€²)2+zzβ€²β€²)y''=2z^2+4xzz'+4xzz'+2x^2((z')^2+zz'')


2x2x2z2(2z2+4xzzβ€²+4xzzβ€²+2x2((zβ€²)2+zzβ€²β€²))+4x4z4=2x^2x^2z^2(2z^2+4xzz'+4xzz'+2x^2((z')^2+zz''))+4x^4z^4=

=x2(2xz2+2x2zzβ€²)2+2xx2z2(2xz2+2x2zzβ€²)=x^2(2xz^2+2x^2zz')^2+2xx^2z^2(2xz^2+2x^2zz')


x2z2(z2+4xzzβ€²+x2((zβ€²)2+zzβ€²β€²))+x2z4=x^2z^2(z^2+4xzz'+x^2((z')^2+zz''))+x^2z^4=

=x2z4+2x3z3zβ€²+x4z2(zβ€²)2+xz2(xz2+x2zzβ€²)=x^2z^4+2x^3z^3z'+x^4z^2(z')^2+xz^2(xz^2+x^2zz')


z2+4xzzβ€²+x2((zβ€²)2+zzβ€²β€²)+z2=z2+2xzzβ€²+x2(zβ€²)2+z2+xzzβ€²z^2+4xzz'+x^2((z')^2+zz'')+z^2=z^2+2xzz'+x^2(z')^2+z^2+xzz'

xzzβ€²+x2zzβ€²β€²=0xzz'+x^2zz''=0

xz(zβ€²+xzβ€²β€²)=0xz(z'+xz'')=0


zβ€²+xzβ€²β€²=0z'+xz''=0

zβ€²=uz'=u

u+xuβ€²=0u+xu'=0

du/u=βˆ’dx/xdu/u=-dx/x

lnu=βˆ’lnx+lnc1lnu=-lnx+lnc_1

u=c1/xu=c_1/x

dz=c1dx/xdz=c_1dx/x

z=c1lnx+c2z=c_1lnx+c_2


y(x)=x2(c1lnx+c2)2y(x)=x^2(c_1lnx+c_2)^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS