characteristic equation:
k 2 − 3 k + 2 = 0 k^2-3k+2=0 k 2 − 3 k + 2 = 0
k = 3 ± 9 − 8 2 k=\frac{3\pm \sqrt{9-8}}{2} k = 2 3 ± 9 − 8
k 1 = 1 , k 2 = 2 k_1=1,k_2=2 k 1 = 1 , k 2 = 2
complementary solution:
y c = c 1 e x + c 2 e 2 x y_c=c_1e^x+c_2e^{2x} y c = c 1 e x + c 2 e 2 x
for particular solution:
y p 1 = A x 2 + B x + C y_{p1}=Ax^2+Bx+C y p 1 = A x 2 + B x + C
2 A − 3 ( 2 A x + B ) + 2 ( A x 2 + B x + C ) = x 2 2A-3(2Ax+B)+2(Ax^2+Bx+C)=x^2 2 A − 3 ( 2 A x + B ) + 2 ( A x 2 + B x + C ) = x 2
A = 1 / 2 A=1/2 A = 1/2
2 A − 3 B + 2 C = 0 2A-3B+2C=0 2 A − 3 B + 2 C = 0
− 6 A + 2 B = 0 ⟹ B = 3 / 2 -6A+2B=0\implies B=3/2 − 6 A + 2 B = 0 ⟹ B = 3/2
C = ( 3 B − 2 A ) / 2 = ( 9 / 2 − 1 ) / 2 = 7 / 4 C=(3B-2A)/2=(9/2-1)/2=7/4 C = ( 3 B − 2 A ) /2 = ( 9/2 − 1 ) /2 = 7/4
y p 2 = A c o s x + B s i n x y_{p2}=Acosx+Bsinx y p 2 = A cos x + B s in x
− A c o s x − B s i n x − 3 ( − A s i n x + B c o s x ) + 2 ( A c o s x + B s i n x ) = s i n x -Acosx-Bsinx-3(-Asinx+Bcosx)+2(Acosx+Bsinx)=sinx − A cos x − B s in x − 3 ( − A s in x + B cos x ) + 2 ( A cos x + B s in x ) = s in x
A − 4 B = 0 A-4B=0 A − 4 B = 0
3 A + B = 1 3A+B=1 3 A + B = 1
B = 1 / 13 , A = 4 / 13 B=1/13,A=4/13 B = 1/13 , A = 4/13
y = y c + y p 1 + y p 2 = c 1 e x + c 2 e 2 x + x 2 / 2 + 3 x / 2 + 7 / 4 + 4 c o s x / 13 + s i n x / 13 y=y_c+y_{p1}+y_{p2}=c_1e^x+c_2e^{2x}+x^2/2+3x/2+7/4+4cosx/13+sinx/13 y = y c + y p 1 + y p 2 = c 1 e x + c 2 e 2 x + x 2 /2 + 3 x /2 + 7/4 + 4 cos x /13 + s in x /13
Comments