Answer to Question #272663 in Differential Equations for Lando

Question #272663

Verify that the function 𝑦 = 𝑐1𝑒


(βˆ’π‘˜+2𝑖)π‘₯ + 𝑐2𝑒


(βˆ’π‘˜βˆ’2𝑖)π‘₯ is a


solution to


𝑦


β€²β€² + 2π‘˜π‘¦


β€² + (π‘˜


2 + 4)𝑦 = 0


1
Expert's answer
2021-11-30T04:22:07-0500
"y=c_1e^{(-k+2i)x}+c_2e^{(-k-2i)x}"




"y'=(-k+2i)c_1e^{(-k+2i)x}+(-k-2i)c_2e^{(-k-2i)x}"




"y''=(-k+2i)^2c_1e^{(-k+2i)x}+(-k-2i)^2c_2e^{(-k-2i)x}"


Substitute


"y''+ 2\ud835\udc58y'+ (k^2+ 4)\ud835\udc66"




"=(-k+2i)^2c_1e^{(-k+2i)x}+(-k-2i)^2c_2e^{(-k-2i)x}"


"+2k(-k+2i)c_1e^{(-k+2i)x}+2k(-k-2i)c_2e^{(-k-2i)x}"


"+ (k^2+ 4)c_1e^{(-k+2i)x}+ (k^2+ 4)c_2e^{(-k-2i)x}"




"=(k^2-4ik-4-2k^2+4ik+k^2+4)c_1e^{(-k+2i)x}"




"+(k^2+4ik-4-2k^2-4ik+k^2+4)c_2e^{(-k-2i)x}"




"=0, x\\in \\Complex"

Therefore the function


"y=c_1e^{(-k+2i)x}+c_2e^{(-k-2i)x}"

is a solution to


"y''+ 2\ud835\udc58y'+ (k^2+ 4)\ud835\udc66= 0."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS