1) Bacteria at initial state=1000,8:00am
Bacteria at final state=100000
Tripled after 2.5hrs
The exponential form is;
"100000=1000*3^{(\\frac{t}{150})}"
"100=3^{(\\frac{t}{150})}"
"ln\\ 100=\\frac{t}{150}ln\\ 3"
"\\frac{t}{150}=(\\frac{ln\\ 100}{ln\\ 3})"
"{t}=(\\frac{ln\\ 100}{ln\\ 3})*150"
"t=628.77mins \\approx629mins"
"t=10hrs \\ 29 mins"
Time =8.00 am+10hr 29 mins
=6.29pm
Population at 2.00pm
"P=1000*3^{(\\frac{t}{150})}"
t=2.00pm -8.00am=6hrs=360mins
"P=1000*3^{(\\frac{360}{150})}"
=41899.83
2)"\\frac{dN}{dt}=kn"
"\\int \\frac{dN}{N}=\\int kdt"
"ln\\ N=kt+C"
Given for t=0, N=40million
"\\implies ln(40)=C"
And for t=10, N=50million
ln(50)=k*10+ln(40)
"k=\\frac{1}{10}(ln\\ 50-ln\\ 40)=\\frac{1}{10}ln\\ (1.25)"
Hence, "ln\\ (N)=\\frac{1}{10}ln\\ (1.25)t+ln\\ (40)"
For t=20
"ln\\ (N)=\\frac{1}{10}ln\\ (1.25)*20+ln\\ (40)"
="ln\\ (1.25)^2+ln\\ (40)=ln\\ (40*1.25^2)"
N=40*1.252
=62.5million
Comments
Leave a comment