dy/dx=xe^x/(e^y+x^2e^y)
"\\frac{dy}{dx}=\\frac{xe^x}{\\left(e^y+x^{\\mathrm{2}}e^y\\right)} \\\\\n\n \\\\\n\n\\frac{dy}{dx}=\\frac{xe^x}{e^y\\left(\\mathrm{1}+x^{\\mathrm{2}}\\right)} \\\\\n\n \\\\\n\ne^ydy=\\frac{xe^x}{\\left(\\mathrm{1}+x^{\\mathrm{2}}\\right)}dx \\\\\n\n \\\\\n\n\\int{e^ydy\\ \\ =\\ \\ \\ \\int{\\frac{xe^x}{\\left(\\mathrm{1}+x^{\\mathrm{2}}\\right)}dx}} \\\\\n\n \\\\\n\ne^y=\\frac{e^i}{\\mathrm{2}}Ei\\mathrm{(}x-i\\mathrm{)}\\ \\ +\\ \\ \\ \\frac{e^{-i}}{\\mathrm{2}}Ei\\mathrm{(}x+i\\mathrm{)}{}{}{}{}{}\\ \\ +\\ \\ C \\\\\n\n \\\\\n\nEi\\ \\ \\ \\ is\\ \\ \\ the\\ \\ \\mathrm{exp}onential\\ \\ function\\ \\ \\ \\ and\\ \\ \\ i\\ \\ \\ \\ \\ is\\ \\ \\ the\\ \\ complex\\ \\ number \\\\"
Comments
Leave a comment