dy/dx=xe^x/(e^y+x^2e^y)
dydx=xex(ey+x2ey)dydx=xexey(1+x2)eydy=xex(1+x2)dx∫eydy = ∫xex(1+x2)dxey=ei2Ei(x−i) + e−i2Ei(x+i) + CEi is the exponential function and i is the complex number\frac{dy}{dx}=\frac{xe^x}{\left(e^y+x^{\mathrm{2}}e^y\right)} \\ \\ \frac{dy}{dx}=\frac{xe^x}{e^y\left(\mathrm{1}+x^{\mathrm{2}}\right)} \\ \\ e^ydy=\frac{xe^x}{\left(\mathrm{1}+x^{\mathrm{2}}\right)}dx \\ \\ \int{e^ydy\ \ =\ \ \ \int{\frac{xe^x}{\left(\mathrm{1}+x^{\mathrm{2}}\right)}dx}} \\ \\ e^y=\frac{e^i}{\mathrm{2}}Ei\mathrm{(}x-i\mathrm{)}\ \ +\ \ \ \frac{e^{-i}}{\mathrm{2}}Ei\mathrm{(}x+i\mathrm{)}{}{}{}{}{}\ \ +\ \ C \\ \\ Ei\ \ \ \ is\ \ \ the\ \ \mathrm{exp}onential\ \ function\ \ \ \ and\ \ \ i\ \ \ \ \ is\ \ \ the\ \ complex\ \ number \\dxdy=(ey+x2ey)xexdxdy=ey(1+x2)xexeydy=(1+x2)xexdx∫eydy = ∫(1+x2)xexdxey=2eiEi(x−i) + 2e−iEi(x+i) + CEi is the exponential function and i is the complex number
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments