a)
"m\\frac{d^2x}{dt^2}=-kx"
"8\\frac{d^2x}{dt^2}+x=0"
"8k^2+1=0"
"k=\\pm i\/2\\sqrt{2}"
"x(t)=c_1cos(t\/(2\\sqrt{2}))+c_2sin(t\/(2\\sqrt{2}))"
From the initial conditions:
"x(0)=6" in"=1\/2" ft
"c_1=1\/2"
"x'(0)=3\/2" ft/s
"x'(t)=-\\frac{1}{4\\sqrt{2}}sin(\\frac{t}{2\\sqrt{2}})+\\frac{c_2}{4\\sqrt{2}}cos(\\frac{t}{2\\sqrt{2}})"
"c_2=\\frac{3}{2}\\cdot 4\\sqrt{2}=6\\sqrt{2}"
we can find equation of motion:
"x(t)=\\frac{1}{2}cos(t\/(2\\sqrt{2}))+6\\sqrt{2}sin(t\/(2\\sqrt{2}))"
b)
Amplitude:
"A=\\sqrt{c_1^2+c_2^2}=\\sqrt{(1\/2)^2+2\\cdot6^2}=\\sqrt{289}\/2=17\/2"
The phase angle:
"tan\\phi=c_1\/c_2=1\/(12\\sqrt{2})"
"\\phi=tan^{-1}(1\/(12\\sqrt{2}))=0.588"
the equation of motion in alternative form:
"x(t)=\\frac{17}{2}sin(\\frac{t}{2\\sqrt{2}}+0.588)"
period of motion:
"T=2\\pi\/\\omega=2\\pi\\cdot2\\sqrt{2}=4\\sqrt{2}\\pi"
c)
the position:
"x(\\pi\/4)=\\frac{1}{2}cos(\\pi\/(8\\sqrt{2}))+6\\sqrt{2}sin(\\pi\/(8\\sqrt{2}))=0.481+2.326=2.807" ft
the velocity:
"v(\\pi\/4)=-\\frac{1}{4\\sqrt{2}}sin(\\frac{\\pi}{8\\sqrt{2}})+\\frac{3}{2}cos(\\frac{\\pi}{8\\sqrt{2}})=-0.048+1.020=0.972" ft/s
Comments
Leave a comment