Steel ball weight=128lb
∆x=2ft
At equilibrium x=0
Position above equilibrium, t=0,x=6in=0.5ft
x=ACos wt="\\frac{1}{2}Cos (\\frac{2\u03c0t}{T})"
f=ma=-kx
"\\frac{dx}{dt}=\\frac{d}{dt}(\\frac{1}{2}Cos(\\frac{2\u03c0t}{T}))"
"=\\frac{2\u03c0}{2T}(-Sin\\frac{2\u03c0t}{T})"
a="\\frac{d^{2}x}{dt^{2}}=\\frac{d}{dt}(-\\frac{2\u03c0}{2T}Sin\\frac{2\u03c0t}{T})"
"=\\frac{1}{2}(\\frac{2\u03c0}{T})^{2}Cos \\frac{2\u03c0t}{T}"
"K=\\frac{F}{\u2206x}" ="\\frac{128}{2}=64lb\/ft"
m="\\frac{128}{32}=4"
a)
"x=\\frac{1}{2}Cos (\\frac{2\u03c0t}{\\frac{\u03c0}{2}})"
"=0.5 Cos(4t)"
b)
t="\\frac{\u03c0}{4}"
"x=0.5Cos(4*\\frac{\u03c0}{4})"
=0.5Cosπ
=-0.5
Comments
Leave a comment