1. Homogeneous equation
Corresponding (auxiliary) equation
"r=\\pm i"
The general solution of the homogeneous differential equation is
Find the particular solution of the non homogeneous differential equation
"y_p'=-(Ax^2+Bx+C)\\sin x+(2Ax+B)\\cos x"
"+(Dx^2+Ex+F)\\cos x+(2Dx+E)\\sin x"
"y_p''=-(Ax^2+Bx+C)\\cos x-2(2Ax+B)\\sin x"
"+2A\\cos x-(Dx^2+Ex+F)\\sin x"
"+2(2Dx+E)\\cos x+2D\\sin x"
Substitute
"\\sin x:"
"+Dx^2+Ex+F=2x"
"\\cos x:"
"+Ax^2+Bx+C=0"
"-4A=2""-2B+2D=0""D=0""2A+2E=0"
"y_p=-\\dfrac{1}{2}x^2\\cos x+\\dfrac{1}{2}x\\sin x"
The general solution of the non homogeneous differential equation is
"y=c_1\\cos x+c_2\\sin x-\\dfrac{1}{2}x^2\\cos x+\\dfrac{1}{2}x\\sin x"
2. Homogeneous equation
Corresponding (auxiliary) equation
"r=\\pm i"
Find the general solution of the non homogeneous differential equation in form
"y'=-C_1\\sin x+C_2\\cos x+C_1'\\cos x+C_2'\\sin x"
Let
Then
"y''=-C_1\\cos x-C_2\\sin x-C_1' \\sin x+C_2'\\cos x"
Substitute
"+C_1\\cos x+C_2\\sin x=2x\\sin x"
"C_1'=-C_2'\\tan x"
"C_2' \\tan x\\sin x+C_2'\\cos x=2x\\sin x"
"C_2' \\sin^2 x+C_2'\\cos^2 x=2x\\sin x\\cos x"
"C_2'=2x\\sin x\\cos x"
"C_2=\\int2x\\sin x\\cos xdx"
"\\int2x\\sin x\\cos xdx"
"u=x, du=dx"
"dv=2\\sin x\\cos xdx, v=\\int2\\sin x\\cos xdx"
"=\\int\\sin (2x)dx=-\\dfrac{1}{2}\\cos(2x)"
"\\int2x\\sin x\\cos xdx=-\\dfrac{1}{2}x\\cos(2x)+\\int\\dfrac{1}{2}\\cos(2x)dx"
"=-\\dfrac{1}{2}x\\cos(2x)+\\dfrac{1}{4}\\sin(2x)+C_3"
"C_2=-\\dfrac{1}{2}x\\cos(2x)+\\dfrac{1}{4}\\sin(2x)+C_3"
"=-x(1-\\cos (2x)=x\\cos (2x)-x"
"C_1=\\int(x\\cos (2x)-x)dx"
"\\int x\\cos (2x)dx"
"u=x, du=dx"
"dv=\\cos (2x)dx, v=\\int\\cos(2x)dx=\\dfrac{1}{2}\\sin(2x)"
"\\int x\\cos (2x)dx=\\dfrac{1}{2}x\\sin(2x)-\\int\\dfrac{1}{2}\\sin(2x)dx"
"=\\dfrac{1}{2}x\\sin(2x)+\\dfrac{1}{4}\\cos(2x)+C_4"
"C_1=\\dfrac{1}{2}x\\sin(2x)+\\dfrac{1}{4}\\cos(2x)-\\dfrac{1}{2}x^2+C_4"
"y=(\\dfrac{1}{2}x\\sin(2x)+\\dfrac{1}{4}\\cos(2x)-\\dfrac{1}{2}x^2+C_4)\\cos x"
"+(-\\dfrac{1}{2}x\\cos(2x)+\\dfrac{1}{4}\\sin(2x)+C_3)\\sin x"
"y=C_4\\cos x+C_3\\sin x-\\dfrac{1}{2}x^2\\cos x"
"+\\dfrac{1}{2}x(\\sin(2x)\\cos x-\\cos(2x)\\sin x)"
"+\\dfrac{1}{4}(\\cos(2x)\\cos x+\\sin(2x)\\sin x)""y=C_4\\cos x+C_3\\sin x-\\dfrac{1}{2}x^2\\cos x+\\dfrac{1}{2}x+\\dfrac{1}{4}\\cos x"
The general solution of the non homogeneous differential equation is
Comments
Leave a comment