"\\frac{dx}{-x}=\\frac{dy}{y}=\\frac{du}{2}"
"\\frac{dx}{-x}=\\frac{dy}{y}\\\\\n\\int \\frac{dx}{-x}=\\int \\frac{dy}{y}\\\\\nln|xy|=ln]C|\\\\\nxy=C;"
2 second equation
"\\frac{dy}{y}=\\frac{du}{2}\\\\\n\\int \\frac{dy}{y}=\\int \\frac{du}{2}\\\\\nln|y|+C=\\frac{u}{2}\\\\\nu-ln(y^2)=C"
So we have two integrals of the charactestic system:
"xy=C_1;"
"u-ln(y^2)=C_2"
Therefore general solution has form
"F\\left( xy, u-ln(y^2) \\right)=0"
or "u=ln(y^2)+H\\left( x\\cdot y \\right)"
where H(t)- any differentable function
Comments
Leave a comment