Use the linearity property of Laplace transform to find L[5e-2t + t + 2e2t]
"\\mathcal{L}(5e^{-2t} + t + 2e^{2t})\\\\\n=\\mathcal{L}(5e^{-2t}) + \\mathcal{L}(t) + \\mathcal{L}(2e^{2t})\\\\\n=5\\mathcal{L}(e^{-2t})+\\mathcal{L}(t)+2\\mathcal{L}(e^{2t})\\\\\n=\\frac{5}{s+2}+\\frac{1}{s^2}+\\frac{2}{s-2}\\\\\n\\frac{5(s^3-2s^2)+s^2-4+2(s^3+2s^2)}{(s^2-4)s^2}\\\\\n=\\frac{7s^3-5s^2-4}{(s^2-4)s^2}"
Comments
Leave a comment